메뉴 건너뛰기




Volumn 29, Issue 9-10, 2004, Pages 1305-1334

Maximum and comparison principles for convex functions on the Heisenberg group

Author keywords

Comparison principle; Convex functions on the Heisenberg group; Maximum principle; Monge Amp re measures; Null Lagrangian property; Oscillation estimate

Indexed keywords


EID: 10844245663     PISSN: 03605302     EISSN: None     Source Type: Journal    
DOI: 10.1081/PDE-200037752     Document Type: Article
Times cited : (48)

References (13)
  • 1
    • 10844276039 scopus 로고    scopus 로고
    • Regularity of convex functions on Heisenberg groups
    • Balogh, Z. M., Rickly, M. (2003). Regularity of convex functions on Heisenberg groups. Ann. Scuola Norm. Sup. Pisa Cl. Sci. II(5):847-868.
    • (2003) Ann. Scuola Norm. Sup. Pisa Cl. Sci. , vol.2 , Issue.5 , pp. 847-868
    • Balogh, Z.M.1    Rickly, M.2
  • 2
    • 0036381924 scopus 로고    scopus 로고
    • On ∞-harmonic functions on the Heisenberg group
    • Bieske, T. (2002). On ∞-harmonic functions on the Heisenberg group. Comm. Partial Differential Equations 27(3&4):727-761.
    • (2002) Comm. Partial Differential Equations , vol.27 , Issue.3-4 , pp. 727-761
    • Bieske, T.1
  • 3
    • 0142194374 scopus 로고    scopus 로고
    • Notions of convexity in Carnot groups
    • Danielli, D., Garofalo, N., Nhieu, D. M. (2003). Notions of convexity in Carnot groups. Comm. Anal. Geom. 11(2):263-341.
    • (2003) Comm. Anal. Geom. , vol.11 , Issue.2 , pp. 263-341
    • Danielli, D.1    Garofalo, N.2    Nhieu, D.M.3
  • 5
    • 10844225772 scopus 로고    scopus 로고
    • On the second order derivatives of convex functions on the Heisenberg group
    • Gutiérrez, C. E., Montanari, A. (2004). On the second order derivatives of convex functions on the Heisenberg group. Ann. Scuola Norm. Sup. Pisa Cl. Sci III(5): 349-366.
    • (2004) Ann. Scuola Norm. Sup. Pisa Cl. Sci , vol.3 , Issue.5 , pp. 349-366
    • Gutiérrez, C.E.1    Montanari, A.2
  • 6
    • 21144476154 scopus 로고
    • Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient
    • Jensen, R. (1993). Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient. Arch. Rational Mech. Anal. 123(1):51-74.
    • (1993) Arch. Rational Mech. Anal. , vol.123 , Issue.1 , pp. 51-74
    • Jensen, R.1
  • 10
    • 0001142604 scopus 로고
    • On the Hessian of a function and the curvatures of its graph
    • Reilly, R. C. (1973-74). On the Hessian of a function and the curvatures of its graph. Michigan Math. J. 20:373-383.
    • (1973) Michigan Math. J. , vol.20 , pp. 373-383
    • Reilly, R.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.