메뉴 건너뛰기




Volumn 302, Issue 2, 2005, Pages 291-305

Periodic solutions of a predator-prey system with stage-structures for predator and prey

Author keywords

Continuation theorem of coincidence degree; Positive periodic solution; Predator prey system; Stage structures; Topological degree theory

Indexed keywords


EID: 10644274227     PISSN: 0022247X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jmaa.2003.11.033     Document Type: Article
Times cited : (14)

References (12)
  • 1
    • 0017110461 scopus 로고
    • Global stability in two species interactions
    • Goh B.S. Global stability in two species interactions J. Math. Biol. 3 1976 313-318
    • (1976) J. Math. Biol. , vol.3 , pp. 313-318
    • Goh, B.S.1
  • 2
    • 0018194555 scopus 로고
    • Global stability of two species system
    • Hastings A. Global stability of two species system J. Math. Biol. 5 1978 399-403
    • (1978) J. Math. Biol. , vol.5 , pp. 399-403
    • Hastings, A.1
  • 3
    • 0030098369 scopus 로고    scopus 로고
    • Stability and delays in a predator system
    • He X.Z. Stability and delays in a predator system J. Math. Anal. Appl. 198 1996 355-370
    • (1996) J. Math. Anal. Appl. , vol.198 , pp. 355-370
    • He, X.Z.1
  • 4
    • 0025132577 scopus 로고
    • A time delay model of single-species growth with stage structure
    • Aiello W.G. Freedman H.I. A time delay model of single-species growth with stage structure Math. Biosci. 101 1990 139-153
    • (1990) Math. Biosci. , vol.101 , pp. 139-153
    • Aiello, W.G.1    Freedman, H.I.2
  • 5
    • 0001687872 scopus 로고
    • Analysis of a model representing stage-structured population growth with state-dependent time delay
    • Aiello W.G. Freedman H.I. Wu J. Analysis of a model representing stage-structured population growth with state-dependent time delay SIAM J. Appl. Math. 52 1992 855-869
    • (1992) SIAM J. Appl. Math. , vol.52 , pp. 855-869
    • Aiello, W.G.1    Freedman, H.I.2    Wu, J.3
  • 7
    • 0031240198 scopus 로고    scopus 로고
    • Periodic solution of a neutral delay equation
    • Li Y. Periodic solution of a neutral delay equation J. Math. Anal. Appl. 214 1997 11-21
    • (1997) J. Math. Anal. Appl. , vol.214 , pp. 11-21
    • Li, Y.1
  • 8
    • 22644451723 scopus 로고    scopus 로고
    • Periodic solutions of a periodic delay predator-prey system
    • Li Y. Periodic solutions of a periodic delay predator-prey system Proc. Amer. Math. Soc. 127 1999 1331-1335
    • (1999) Proc. Amer. Math. Soc. , vol.127 , pp. 1331-1335
    • Li, Y.1
  • 9
    • 0000512992 scopus 로고    scopus 로고
    • On a periodic neutral delay Lotka-Volterra system
    • Li Y. On a periodic neutral delay Lotka-Volterra system Nonlinear Anal. 39 2000 767-778
    • (2000) Nonlinear Anal. , vol.39 , pp. 767-778
    • Li, Y.1
  • 10
    • 0036151553 scopus 로고    scopus 로고
    • Periodic solution for a two-species nonautonomous competition Lotka-Volterra patch system with time delay
    • Zhang Z.Q. Wang Z.C. Periodic solution for a two-species nonautonomous competition Lotka-Volterra patch system with time delay J. Math. Anal. Appl. 265 2002 38-48
    • (2002) J. Math. Anal. Appl. , vol.265 , pp. 38-48
    • Zhang, Z.Q.1    Wang, Z.C.2
  • 11
    • 10644279465 scopus 로고    scopus 로고
    • Periodic solutions for nonautonomous predator-prey system with diffusion and time delay
    • Zhang Z.Q. Wang Z.C. Periodic solutions for nonautonomous predator-prey system with diffusion and time delay Hiroshima Math. J. 31 2001 371-381
    • (2001) Hiroshima Math. J. , vol.31 , pp. 371-381
    • Zhang, Z.Q.1    Wang, Z.C.2
  • 12
    • 10644290381 scopus 로고    scopus 로고
    • The existence of periodic solution of a two-patches predator-prey dispersion delay models with functional response
    • Zhang Z.Q. Wang Z.C. The existence of periodic solution of a two-patches predator-prey dispersion delay models with functional response J. Korean Math. Soc. 40 2003 869-881
    • (2003) J. Korean Math. Soc. , vol.40 , pp. 869-881
    • Zhang, Z.Q.1    Wang, Z.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.