메뉴 건너뛰기




Volumn 38, Issue 4, 2005, Pages 473-483

Algorithms and networks for accelerated convergence of adaptive LDA

Author keywords

Adaptive linear discriminant analysis; Adaptive principal component analysis; Conjugate direction optimization; Convergence analysis; Gradient descent optimization; Newton Raphson optimization; Self organizing neural network; Steepest descent optimization

Indexed keywords

ADAPTIVE ALGORITHMS; CONVERGENCE OF NUMERICAL METHODS; IMAGE PROCESSING; ITERATIVE METHODS; NEURAL NETWORKS; ONLINE SYSTEMS; OPTIMIZATION; PRINCIPAL COMPONENT ANALYSIS; ROBUSTNESS (CONTROL SYSTEMS);

EID: 10644260389     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2004.07.003     Document Type: Article
Times cited : (20)

References (23)
  • 1
    • 0033872604 scopus 로고    scopus 로고
    • An experiment-based quantitative and comparative analysis of target detection and image classification algorithms for hyperspectral imagery
    • C. Chang, H. Ren, An experiment-based quantitative and comparative analysis of target detection and image classification algorithms for hyperspectral imagery, IEEE Trans. Geosci. Remote Sensing 38 (2) (2000) 1044-1063.
    • (2000) IEEE Trans. Geosci. Remote Sensing , vol.38 , Issue.2 , pp. 1044-1063
    • Chang, C.1    Ren, H.2
  • 2
    • 0031139248 scopus 로고    scopus 로고
    • On self-organizing algorithm and networks for class-separability features
    • C. Chatterjee, V.P. Roychowdhury, On self-organizing algorithm and networks for class-separability features, IEEE Trans. Neural Networks 8 (3) (1997) 663-678.
    • (1997) IEEE Trans. Neural Networks , vol.8 , Issue.3 , pp. 663-678
    • Chatterjee, C.1    Roychowdhury, V.P.2
  • 3
    • 0034300875 scopus 로고    scopus 로고
    • A new LDA-based face recognition system which can solve the small sample size problem
    • L. Chen, H. Mark Liao, J. Lin, M. Ko, G. Yu, A new LDA-based face recognition system which can solve the small sample size problem, Pattern Recog. 33 (10) (2000) 1713-1726.
    • (2000) Pattern Recog. , vol.33 , Issue.10 , pp. 1713-1726
    • Chen, L.1    Liao, H.M.2    Lin, J.3    Ko, M.4    Yu, G.5
  • 4
    • 0003135710 scopus 로고    scopus 로고
    • Discriminant analysis of principal components for face recognition
    • H. Wechsler, P.J. Phillips, V. Bruce, F. Fogelman Soulie, T.S. Huang (Eds.), Springer, Berlin
    • W. Zhao, A. Krishnaswamy, R. Chellappa, D.L. Swets, J. Weng, Discriminant analysis of principal components for face recognition, in: H. Wechsler, P.J. Phillips, V. Bruce, F. Fogelman Soulie, T.S. Huang (Eds.), Face Recognition: From Theory to Applications, Springer, Berlin, 1998, pp. 73-85.
    • (1998) Face Recognition: from Theory to Applications , pp. 73-85
    • Zhao, W.1    Krishnaswamy, A.2    Chellappa, R.3    Swets, D.L.4    Weng, J.5
  • 7
    • 0032123957 scopus 로고    scopus 로고
    • Fast subspace tracking and neural-network learning by a novel information criterion
    • Y. Maio, Y. Hua, Fast subspace tracking and neural-network learning by a novel information criterion, IEEE Trans. Signal Process. 46 (1998) 1964-1979.
    • (1998) IEEE Trans. Signal Process. , vol.46 , pp. 1964-1979
    • Maio, Y.1    Hua, Y.2
  • 8
    • 0029267855 scopus 로고
    • Principal component extraction using recursive least squares learning
    • S. Bannour, M.R. Azimi-Sadjadi, Principal component extraction using recursive least squares learning, IEEE Trans. Neural Networks 6 (1995) 457-469.
    • (1995) IEEE Trans. Neural Networks , vol.6 , pp. 457-469
    • Bannour, S.1    Azimi-Sadjadi, M.R.2
  • 9
    • 0027206958 scopus 로고
    • Least mean square error reconstruction principle for self-organizing neural-net
    • L. Xu, Least mean square error reconstruction principle for self-organizing neural-net. Neural Networks 6 (1993) 627-648.
    • (1993) Neural Networks , vol.6 , pp. 627-648
    • Xu, L.1
  • 12
    • 0038667916 scopus 로고    scopus 로고
    • Fast adaptive algorithms and networks for class-separability features
    • H. Abrishami Moghaddam, Kh. Amiri-Zadeh, Fast adaptive algorithms and networks for class-separability features, Pattern Recog. 36 (2003) 1695-1702.
    • (2003) Pattern Recog. , vol.36 , pp. 1695-1702
    • Moghaddam, H.A.1    Amiri-Zadeh, Kh.2
  • 14
    • 0024665804 scopus 로고
    • Application of conjugate gradient and steepest descent for computing the eigenvalues of an operator
    • T.K. Sarkar, X. Yang, Application of conjugate gradient and steepest descent for computing the eigenvalues of an operator, Signal Processing 17 (1989) 31-37.
    • (1989) Signal Processing , vol.17 , pp. 31-37
    • Sarkar, T.K.1    Yang, X.2
  • 16
    • 0024883243 scopus 로고    scopus 로고
    • Optimal unsupervised learning in a single-layer linear feed-forward neural network
    • T.D. Sanger, Optimal unsupervised learning in a single-layer linear feed-forward neural network. Neural Networks 2 ( 1998) 459-473.
    • (1998) Neural Networks , vol.2 , pp. 459-473
    • Sanger, T.D.1
  • 20
    • 0017526570 scopus 로고    scopus 로고
    • Analysis of recursive stochastic algorithms
    • L. Ljung, Analysis of recursive stochastic algorithms, IEEE Trans. Automat. Cont. 22 (4) (1997) 551-575.
    • (1997) IEEE Trans. Automat. Cont. , vol.22 , Issue.4 , pp. 551-575
    • Ljung, L.1
  • 22
    • 0022266934 scopus 로고
    • An optimal orthonormal system for discriminant analysis
    • T. Okada, S. Tomita, An optimal orthonormal system for discriminant analysis, Pattern Recog. 18 (2) (1985) 139-144.
    • (1985) Pattern Recog. , vol.18 , Issue.2 , pp. 139-144
    • Okada, T.1    Tomita, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.