메뉴 건너뛰기




Volumn 161, Issue 3, 2005, Pages 843-864

Determination of Dirichlet-to-Neumann map for a mixed boundary problem

Author keywords

Boundary integral; Helmholtz equation; Numerical solution; Potential theory; Regularization

Indexed keywords

APPROXIMATION THEORY; BOUNDARY CONDITIONS; COMPUTATIONAL METHODS; INTEGRAL EQUATIONS; PROBLEM SOLVING; THEOREM PROVING; VECTORS;

EID: 10644244242     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2003.12.043     Document Type: Article
Times cited : (13)

References (10)
  • 3
    • 0346048389 scopus 로고    scopus 로고
    • Analysis of the electromagnetic scattering from a cavity
    • H. Ammari, G. Bao, A.W. Wood, Analysis of the electromagnetic scattering from a cavity, Jpn. J. Indust. Appl. Math. 19 (2002) 301-310.
    • (2002) Jpn. J. Indust. Appl. Math. , vol.19 , pp. 301-310
    • Ammari, H.1    Bao, G.2    Wood, A.W.3
  • 4
    • 0000015833 scopus 로고
    • The numerical solution of a hypersingular integral equation in scattering theory
    • R. Kress, The numerical solution of a hypersingular integral equation in scattering theory, J. Comput. Appl. Math. 61 (3) (1995) 345-360.
    • (1995) J. Comput. Appl. Math. , vol.61 , Issue.3 , pp. 345-360
    • Kress, R.1
  • 7
    • 0347687549 scopus 로고    scopus 로고
    • Reconstruction and uniqueness of an inverse scattering problem with impedance boundary
    • J.J. Liu, J. Cheng, G. Nakamura, Reconstruction and uniqueness of an inverse scattering problem with impedance boundary, Sci. China Ser. A 45 (11) (2002).
    • (2002) Sci. China Ser. A , vol.45 , Issue.11
    • Liu, J.J.1    Cheng, J.2    Nakamura, G.3
  • 8
    • 10644264702 scopus 로고    scopus 로고
    • Reconstructions of shape and boundary impedance by probe method
    • in press
    • J. Cheng, J.J. Liu, G. Nakamura, Reconstructions of shape and boundary impedance by probe method, J. Kyto Math., in press.
    • J. Kyto Math.
    • Cheng, J.1    Liu, J.J.2    Nakamura, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.