메뉴 건너뛰기




Volumn 162, Issue 1, 2005, Pages 381-401

Numerical solution of damped nonlinear Klein-Gordon equations using variational method and finite element approach

Author keywords

Finite element methods; Gauss Legendre quadrature; Klein Gordon equations; Numerical solution; Runge Kutta method

Indexed keywords

ALGORITHMS; APPROXIMATION THEORY; FINITE ELEMENT METHOD; INTERPOLATION; ORDINARY DIFFERENTIAL EQUATIONS; QUANTUM THEORY;

EID: 10444286668     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2003.12.102     Document Type: Article
Times cited : (43)

References (22)
  • 1
    • 0001323666 scopus 로고
    • Une thóréme de compacité
    • J.P. Aubin, Une thóréme de compacité, C. R. Acad. Sci. Paris 256 (1963) 5042-5044.
    • (1963) C. R. Acad. Sci. Paris , vol.256 , pp. 5042-5044
    • Aubin, J.P.1
  • 3
    • 0003286887 scopus 로고
    • Mathematical analysis and numerical methods for science and technology
    • Springer-Verlag
    • R. Dautray, J.L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Evolution Problems, 5, Springer-Verlag, 1992.
    • (1992) Evolution Problems , vol.5
    • Dautray, R.1    Lions, J.L.2
  • 4
    • 10444281839 scopus 로고
    • Higher-order numerical solution of a 2 + 1d nonlinear Klein-Gordon equation
    • H. Fusaoka, Higher-order numerical solution of a 2 + 1d nonlinear Klein-Gordon equation, J. Phys. Soc., Japan 58 (10) (1989) 3509-3513.
    • (1989) J. Phys. Soc., Japan , vol.58 , Issue.10 , pp. 3509-3513
    • Fusaoka, H.1
  • 5
    • 10444264619 scopus 로고
    • Numerical solution of Klein-Gordon equation with quadratic and cubic nonlinearity
    • H. Fusaoka, Numerical solution of Klein-Gordon equation with quadratic and cubic nonlinearity, J. Phys. Soc., Japan 59 (2) (1990) 455-463.
    • (1990) J. Phys. Soc., Japan , vol.59 , Issue.2 , pp. 455-463
    • Fusaoka, H.1
  • 8
    • 0000737883 scopus 로고
    • Das Aufangswertproblem in Grossen füreine Klasse nichtliner Wallenglerchungen
    • K. Jörgens, Das Aufangswertproblem in Grossen füreine Klasse nichtliner Wallenglerchungen, Math. Z. (1961) 295-308.
    • (1961) Math. Z. , pp. 295-308
    • Jörgens, K.1
  • 9
    • 0037507444 scopus 로고    scopus 로고
    • A numerical solution of the Klein-Gordon equation and convergence of the decomposition method
    • in press
    • D. Kaya, S.M. El-Sayed, A numerical solution of the Klein-Gordon equation and convergence of the decomposition method, Applied Mathematics and Computation, (2003) in press.
    • (2003) Applied Mathematics and Computation
    • Kaya, D.1    El-Sayed, S.M.2
  • 10
    • 0038543060 scopus 로고    scopus 로고
    • On the exchange of energy in coupled Klein-Gordon equations
    • K.R. Khusnutdinova, D.E. Pelinovsky, On the exchange of energy in coupled Klein-Gordon equations, Wave Motion 38 (2003) 1-10.
    • (2003) Wave Motion , vol.38 , pp. 1-10
    • Khusnutdinova, K.R.1    Pelinovsky, D.E.2
  • 11
    • 0037434494 scopus 로고    scopus 로고
    • Compactons in discrete nonlinear Klein-Gordon models
    • P.G. Kevrekidis, V.V. Konotop, Compactons in discrete nonlinear Klein-Gordon models, Math. Comput. Simulat. 62 (2003) 79-89.
    • (2003) Math. Comput. Simulat. , vol.62 , pp. 79-89
    • Kevrekidis, P.G.1    Konotop, V.V.2
  • 12
    • 0003775898 scopus 로고
    • Numerical solution for nonlinear Klein-Gordon equation by collocation method with respect to spectral method
    • I.J. Lee, Numerical solution for nonlinear Klein-Gordon equation by collocation method with respect to spectral method, J. Korean Math. Soc. 32 (3) (1995) 541-551.
    • (1995) J. Korean Math. Soc. , vol.32 , Issue.3 , pp. 541-551
    • Lee, I.J.1
  • 15
    • 0035422337 scopus 로고    scopus 로고
    • Optimal control problems for the damped Klein-Gordon equations
    • S. Nakagiri, J. Ha, Optimal control problems for the damped Klein-Gordon equations, Nonlinear Anal. 47 (2000) 89-100.
    • (2000) Nonlinear Anal. , vol.47 , pp. 89-100
    • Nakagiri, S.1    Ha, J.2
  • 16
    • 0346057213 scopus 로고    scopus 로고
    • Moving kinks and nanopterons in the nonlinear Klein-Gordon lattice
    • A.V. Savin, Y. Zolotaryuk, J.C. Eilbeck, Moving kinks and nanopterons in the nonlinear Klein-Gordon lattice, Phys. D: Nonlinear Phenom. 138 (3-4) (2000) 267-281, 15.
    • (2000) Phys. D: Nonlinear Phenom. , vol.138 , Issue.3-4 , pp. 267-281
    • Savin, A.V.1    Zolotaryuk, Y.2    Eilbeck, J.C.3
  • 17
    • 0000765110 scopus 로고
    • Numerical solution of a nonlinear Klein-Gordon equation
    • W. Strauss, L. Vazquez, Numerical solution of a nonlinear Klein-Gordon equation, J. Comput. Phys. 28 (1978) 271-278.
    • (1978) J. Comput. Phys. , vol.28 , pp. 271-278
    • Strauss, W.1    Vazquez, L.2
  • 20
    • 0003278399 scopus 로고
    • Infinite-dimensional dynamical systems in mechanics and physics
    • Springer-Verlag
    • R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Math. Sci., 68, Springer-Verlag, 1988.
    • (1988) Applied Math. Sci. , vol.68
    • Temam, R.1
  • 22
    • 10444246841 scopus 로고    scopus 로고
    • Weak solutions of nonlinear parabolic evolution and their numerical analysis based on FEM
    • Q.F. Wang, Weak solutions of nonlinear parabolic evolution and their numerical analysis based on FEM, Mem. Grad. School Sci. Technol., Kobe Univ. 20-A (2002) 81-94.
    • (2002) Mem. Grad. School Sci. Technol., Kobe Univ. , vol.20 A , pp. 81-94
    • Wang, Q.F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.