메뉴 건너뛰기




Volumn 52, Issue 3, 2005, Pages 333-352

Array-index: A plug&search K nearest neighbors method for high-dimensional data

Author keywords

Image databases; Indexing methods; KNN image search, array index, plug search method

Indexed keywords

ALGORITHMS; ARRAYS; DATA COMPRESSION; IMAGE PROCESSING; INDEXING (OF INFORMATION); SET THEORY; THEOREM PROVING;

EID: 10444274033     PISSN: 0169023X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.datak.2004.06.015     Document Type: Article
Times cited : (21)

References (33)
  • 2
    • 0036206031 scopus 로고    scopus 로고
    • Towards meaningful high-dimensional nearest neighbor search by human-computer interaction
    • C.C. Aggarwal Towards meaningful high-dimensional nearest neighbor search by human-computer interaction ICDE 2002
    • (2002) ICDE
    • Aggarwal, C.C.1
  • 3
    • 0025447750 scopus 로고
    • R*-tree: An efficient and robust access method for points and rectangles
    • N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger R*-tree: an efficient and robust access method for points and rectangles ACM SIGMOD May 1990 322 331
    • (1990) ACM SIGMOD , Issue.MAY , pp. 322-331
    • Beckmann, N.1    Kriegel, H.-P.2    Schneider, R.3    Seeger, B.4
  • 4
    • 0018492535 scopus 로고
    • Multidimensional binary search trees in database applications
    • J.L. Bentley Multidimensional binary search trees in database applications IEEE Trans. Software Eng. SE-5 4 1979 333 340
    • (1979) IEEE Trans. Software Eng. , vol.5 , Issue.4 , pp. 333-340
    • Bentley, J.L.1
  • 5
    • 0033897520 scopus 로고    scopus 로고
    • Independent quantization: An index compression technique for high-dimensional data spaces
    • S. Berchtold, C. Bohm, H.V. Jagadish, H.-P. Kriegel, J. Sander, Independent quantization: an index compression technique for high-dimensional data spaces, in: Proc. of ICDE, 2000
    • (2000) Proc. of ICDE
    • Berchtold, S.1    Bohm, C.2    Jagadish, H.V.3    Kriegel, H.-P.4    Sander, J.5
  • 6
    • 0037870443 scopus 로고    scopus 로고
    • The X-tree: An index structure for high-dimensional data
    • S. Berchtold, D. Keim, and H.-P. Kriegel The X-tree: an index structure for high-dimensional data VLDB 1996
    • (1996) VLDB
    • Berchtold, S.1    Keim, D.2    Kriegel, H.-P.3
  • 7
    • 0036501928 scopus 로고    scopus 로고
    • An efficient indexing method for nearest neighbor searches in high-dimensional image databases
    • G.-H. Cha, X. Zhu, D. Petkovic, and C.-W. Chung An efficient indexing method for nearest neighbor searches in high-dimensional image databases IEEE Trans. Multimedia 4 1 2002
    • (2002) IEEE Trans. Multimedia , vol.4 , Issue.1
    • Cha, G.-H.1    Zhu, X.2    Petkovic, D.3    Chung, C.-W.4
  • 8
    • 0005287692 scopus 로고    scopus 로고
    • Local dimensionality reduction: A new approach to indexing high dimensional space
    • Egypt
    • K. Chakrabarti, S. Mehrotra, Local dimensionality reduction: a new approach to indexing high dimensional space, 26th VLDB, Egypt, 2000
    • (2000) 26th VLDB
    • Chakrabarti, K.1    Mehrotra, S.2
  • 10
    • 84976803260 scopus 로고
    • A fast algorithm for indexing data-mining and visualization of traditional and multimedia datasets
    • C. Faloutsos, and K. Lin A fast algorithm for indexing data-mining and visualization of traditional and multimedia datasets ACM SIGMOD May 1995
    • (1995) ACM SIGMOD , Issue.MAY
    • Faloutsos, C.1    Lin, K.2
  • 14
    • 10444283827 scopus 로고    scopus 로고
    • Nearest neighbors can be found efficiently if the dimension is small relative to the input size
    • M. Hagedoom Nearest neighbors can be found efficiently if the dimension is small relative to the input size ICDT 2003
    • (2003) ICDT
    • Hagedoom, M.1
  • 16
    • 0345359234 scopus 로고    scopus 로고
    • An adaptive and efficient dimensionality reduction algorithm for high-dimensional indexing
    • H. Jin, B.C. Ooi, H.T. Shen, C. Yu, and A. Zhou An adaptive and efficient dimensionality reduction algorithm for high-dimensional indexing ICDE 2003
    • (2003) ICDE
    • Jin, H.1    Ooi, B.C.2    Shen, H.T.3    Yu, C.4    Zhou, A.5
  • 17
    • 0031162081 scopus 로고    scopus 로고
    • The SR-tree: An index structure for high-dimensional nearest neighbor queries
    • N. Katayama, and S. Satoh The SR-tree: an index structure for high-dimensional nearest neighbor queries ACM SIGMOD May 1997
    • (1997) ACM SIGMOD , Issue.MAY
    • Katayama, N.1    Satoh, S.2
  • 18
    • 0034832364 scopus 로고    scopus 로고
    • Locally adaptive dimensionality reduction for indexing large time series databases
    • E. Keogh, K. Chakrabarti, S. Mehrotra, and M. Pazzani Locally adaptive dimensionality reduction for indexing large time series databases ACM SIGMOD 2001
    • (2001) ACM SIGMOD
    • Keogh, E.1    Chakrabarti, K.2    Mehrotra, S.3    Pazzani, M.4
  • 24
    • 84976784176 scopus 로고
    • Spatial query processing in an object-oriented database system
    • May
    • J. Orenstein, Spatial query processing in an object-oriented database system. in: Proc. ACM SIGMOD, May 1986
    • (1986) Proc. ACM SIGMOD
    • Orenstein, J.1
  • 28
    • 0038494931 scopus 로고    scopus 로고
    • How to improve the pruning ability of dynamic metric access methods
    • C. Traina, A.J.M. Traina, R.F.S. Filho, and C. Faloutsos How to improve the pruning ability of dynamic metric access methods CIKM November 2002
    • (2002) CIKM , Issue.NOVEMBER
    • Traina, C.1    Traina, A.J.M.2    Filho, R.F.S.3    Faloutsos, C.4
  • 30
    • 0000681228 scopus 로고    scopus 로고
    • A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces
    • USA
    • R. Weber, H.-J. Schek, S. Blott. A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces. in: Proc. of the 24th VLDB, USA, 1998
    • (1998) Proc. of the 24th VLDB
    • Weber, R.1    Schek, H.-J.2    Blott, S.3
  • 33
    • 0030157145 scopus 로고    scopus 로고
    • BIRCH: An efficient data clustering method for very large databases
    • T. Zhang, R. Ramakrishnan, and M. Livny BIRCH: an efficient data clustering method for very large databases ACM SIGMOD 1996
    • (1996) ACM SIGMOD
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.