메뉴 건너뛰기




Volumn 72, Issue 2, 2004, Pages 170-184

A hint of renormalization

Author keywords

[No Author keywords available]

Indexed keywords


EID: 1042279725     PISSN: 00029505     EISSN: None     Source Type: Journal    
DOI: 10.1119/1.1624112     Document Type: Article
Times cited : (102)

References (40)
  • 1
    • 36149022296 scopus 로고
    • The electromagnetic shift of energy levels
    • H. Bethe, "The electromagnetic shift of energy levels," Phys. Rev. 72, 339-341 (1947).
    • (1947) Phys. Rev. , vol.72 , pp. 339-341
    • Bethe, H.1
  • 9
    • 0001898814 scopus 로고
    • The renormalization group and the e-expansion
    • K. G. Wilson and J. Kogut, "The renormalization group and the e-expansion," Phys. Rep. C 12, 75-199 (1974).
    • (1974) Phys. Rep. C , vol.12 , pp. 75-199
    • Wilson, K.G.1    Kogut, J.2
  • 10
    • 33646646646 scopus 로고    scopus 로고
    • note
    • Some phase transitions are triggered by quantum fluctuations. This subtlety plays no role in what follows.
  • 11
    • 33646635553 scopus 로고    scopus 로고
    • note
    • The short distance physics in statistical systems is given by Hamiltonians describing, for instance, interactions among magnetic ions or molecules of a fluid.
  • 12
    • 0009122120 scopus 로고
    • TASI'89 Summer School, Boulder, ASI
    • G. Lepage, "What is renormalization?," TASI'89 Summer School, Boulder, ASI, 1989, p. 483.
    • (1989) What is Renormalization? , pp. 483
    • Lepage, G.1
  • 13
    • 21144477206 scopus 로고
    • Renormalization of a model quantum field theory
    • P. Kraus and D. Griffiths, "Renormalization of a model quantum field theory," Am. J. Phys. 60, 1013-1023 (1992).
    • (1992) Am. J. Phys. , vol.60 , pp. 1013-1023
    • Kraus, P.1    Griffiths, D.2
  • 14
    • 0032349265 scopus 로고    scopus 로고
    • Regularization and renormalization in scattering from Dirac delta-potentials
    • I. Mitra, A. DasGupta, and B. Dutta-Roy, "Regularization and renormalization in scattering from Dirac delta-potentials," Am. J. Phys. 66, 1101-1109 (1998).
    • (1998) Am. J. Phys. , vol.66 , pp. 1101-1109
    • Mitra, I.1    DasGupta, A.2    Dutta-Roy, B.3
  • 15
    • 0002212784 scopus 로고
    • Learning quantum field theory from elementary quantum mechanics
    • P. Gosdzinsky and R. Tarrach, "Learning quantum field theory from elementary quantum mechanics," Am. J. Phys. 59, 70-74 (1991).
    • (1991) Am. J. Phys. , vol.59 , pp. 70-74
    • Gosdzinsky, P.1    Tarrach, R.2
  • 16
    • 0001483987 scopus 로고
    • An analytical example of renormalization in two-dimensional quantum mechanics
    • L. Mead and J. Godines, "An analytical example of renormalization in two-dimensional quantum mechanics," Am. J. Phys. 59, 935-937 (1991).
    • (1991) Am. J. Phys. , vol.59 , pp. 935-937
    • Mead, L.1    Godines, J.2
  • 17
    • 0031582755 scopus 로고    scopus 로고
    • Renormalization in non-relativistic quantum mechanics
    • K. Adhikari and A. Ghosh, "Renormalization in non-relativistic quantum mechanics," J. Phys. A 30, 6553-6564 (1997).
    • (1997) J. Phys. A , vol.30 , pp. 6553-6564
    • Adhikari, K.1    Ghosh, A.2
  • 18
    • 33646639965 scopus 로고    scopus 로고
    • note
    • 0 does not have in general an intuitive meaning in this case. Because this subtlety plays no role in our discussion, we ignore this difficulty in the following.
  • 19
    • 33646639616 scopus 로고    scopus 로고
    • note
    • Actually for QED it is a four-dimensional integral over four-momenta and the integrand is a product of propagators.
  • 20
    • 0007294713 scopus 로고
    • How to deal with infinite integrals in quantum field theory
    • R. Delbourgo, "How to deal with infinite integrals in quantum field theory," Rep. Prog. Phys. 39, 345-399 (1976).
    • (1976) Rep. Prog. Phys. , vol.39 , pp. 345-399
    • Delbourgo, R.1
  • 21
    • 0034385551 scopus 로고    scopus 로고
    • Regularization methods for delta-function potential in two-dimensional quantum mechanics
    • S. Nyeo, "Regularization methods for delta-function potential in two-dimensional quantum mechanics," Am. J. Phys. 68, 571-575 (2000).
    • (2000) Am. J. Phys. , vol.68 , pp. 571-575
    • Nyeo, S.1
  • 22
    • 33646652728 scopus 로고    scopus 로고
    • note
    • R, the renormalized quantities like F(x) are finally expressed only in terms of physical quantities that are independent of the regularization scheme (Ref. 15).
  • 23
    • 0039710922 scopus 로고
    • An electrostatic example to illustrate dimensional regularization and renormalization group technique
    • M. Hans, "An electrostatic example to illustrate dimensional regularization and renormalization group technique," Am. J. Phys. 51, 694-698 (1983).
    • (1983) Am. J. Phys. , vol.51 , pp. 694-698
    • Hans, M.1
  • 24
    • 33646669426 scopus 로고    scopus 로고
    • note
    • R can themselves be nonconvergent. Most of the time they are at best asymptotic. In some cases they can be resummed using Borel transform and Padé approximants.
  • 25
    • 33646666773 scopus 로고    scopus 로고
    • note
    • QFT, it is in general also necessary to change the normalization of the analog of the function F - the Green functions - by a factor that diverges in the limit Λ → ∞. This procedure is known as field renormalization.
  • 26
    • 33646662994 scopus 로고    scopus 로고
    • note
    • Let us emphasize that there is a subtlety if dimensional regularization is used. Actually, this regularization also introduces a dimensional parameter λ, which is not directly a regulator as is the cut-off Λ in the integral of Eq. (5). The analog of Λ in this regularization is given by Λ = λ exp(1/ε), where ε=4 - D and D is the spatial dimension. It often is convenient to take λ ∼ μ. We mention that dimensional regularization kills all nonlogarithmic divergences (Ref. 14).
  • 27
    • 0042890010 scopus 로고    scopus 로고
    • Bogoliubov renormalization group and symmetry of solutions in mathematical physics
    • D. Shirkov and V. Kovalev, "Bogoliubov renormalization group and symmetry of solutions in mathematical physics," Phys. Rep. 352, 219-249 (2001).
    • (2001) Phys. Rep. , vol.352 , pp. 219-249
    • Shirkov, D.1    Kovalev, V.2
  • 28
    • 33646670534 scopus 로고    scopus 로고
    • note
    • -t. The law is associative as it should be for a group.
  • 29
    • 33646666583 scopus 로고    scopus 로고
    • note
    • 0 is in general not associated exactly with the scale Λ, but with Λ up to a factor of order unity.
  • 30
    • 0033235466 scopus 로고    scopus 로고
    • Functional self-similarity and renormalization group symmetry in mathematical physics
    • V. Kovalev and D. Shirkov, "Functional self-similarity and renormalization group symmetry in mathematical physics," Theor. Math. Phys. 121, 1315-1332 (1999).
    • (1999) Theor. Math. Phys. , vol.121 , pp. 1315-1332
    • Kovalev, V.1    Shirkov, D.2
  • 31
    • 33646670698 scopus 로고    scopus 로고
    • note
    • It is quite similar to the Compton wavelength of the pion which is the typical range of the nuclear force between hadrons like protons and nucleons.
  • 32
    • 42549152515 scopus 로고
    • Random walks: A pedestrian approach to polymers, critical phenomena and field theory
    • E. Raposo, S. de Oliveira, A. Nemirovsky, and M. Coutinho-Filho, "Random walks: A pedestrian approach to polymers, critical phenomena and field theory," Am. J. Phys. 59, 633-645 (1991).
    • (1991) Am. J. Phys. , vol.59 , pp. 633-645
    • Raposo, E.1    De Oliveira, S.2    Nemirovsky, A.3    Coutinho-Filho, M.4
  • 33
    • 0033100060 scopus 로고    scopus 로고
    • Scaling, universality, and renormalization: Three pillars of modern critical phenomena
    • H. Stanley, "Scaling, universality, and renormalization: Three pillars of modern critical phenomena," Rev. Mod. Phys. 71, S358-S366 (1999).
    • (1999) Rev. Mod. Phys. , vol.71
    • Stanley, H.1
  • 34
    • 85013095226 scopus 로고    scopus 로고
    • Resource Letter CPPPT-1: Critical point phenomena and phase transitions
    • J. Tobochnik, "Resource Letter CPPPT-1: Critical point phenomena and phase transitions," Am. J. Phys. 69, 255-263 (2001).
    • (2001) Am. J. Phys. , vol.69 , pp. 255-263
    • Tobochnik, J.1
  • 35
    • 0002418646 scopus 로고    scopus 로고
    • Exact renormalization group equations: An introductory review
    • C. Bagnuls and C. Bervillier, "Exact renormalization group equations: An introductory review," Phys. Rep. 348, 91-157 (2001).
    • (2001) Phys. Rep. , vol.348 , pp. 91-157
    • Bagnuls, C.1    Bervillier, C.2
  • 36
    • 33646650871 scopus 로고    scopus 로고
    • note
    • -1 to unnatural values. Most of the time, such a finely-tuned model is no longer predictive.
  • 38
    • 0010862640 scopus 로고
    • Critical exponents from the effective average action
    • N. Tetradis and C. Wetterich, "Critical exponents from the effective average action," Nucl. Phys. B [FS] 422, 541-592 (1994).
    • (1994) Nucl. Phys. B [FS] , vol.422 , pp. 541-592
    • Tetradis, N.1    Wetterich, C.2
  • 39
    • 33646654611 scopus 로고    scopus 로고
    • note
    • 0 → 0 when Λ → ∞, corresponds to asymptotically free theories, that is, in four space-time dimensions, to non-Abelian gauge theories.
  • 40
    • 0031494202 scopus 로고    scopus 로고
    • On water, steam, and string theory
    • C. Schmidhuber, "On water, steam, and string theory," Am. J. Phys. 65, 1042-1050 (1997).
    • (1997) Am. J. Phys. , vol.65 , pp. 1042-1050
    • Schmidhuber, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.