메뉴 건너뛰기




Volumn 301, Issue 2, 2005, Pages 295-312

The period function for quadratic integrable systems with cubic orbits

Author keywords

Abelian integrals; Period function

Indexed keywords


EID: 10344255715     PISSN: 0022247X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jmaa.2004.07.022     Document Type: Article
Times cited : (17)

References (53)
  • 1
    • 38249035274 scopus 로고
    • The monotonicity of the period function for planar Hamiltonian vector fields
    • C. Chicone The monotonicity of the period function for planar Hamiltonian vector fields J. Differential Equation 69 1987 310-321
    • (1987) J. Differential Equation , vol.69 , pp. 310-321
    • Chicone, C.1
  • 2
    • 38249029275 scopus 로고
    • Geometric method for two point nonlinear boundary value problems
    • C. Chicone Geometric method for two point nonlinear boundary value problems J. Differential Equations 72 1988 360-407
    • (1988) J. Differential Equations , vol.72 , pp. 360-407
    • Chicone, C.1
  • 3
    • 84966216689 scopus 로고
    • A quadratic system with a nonmonotonic period function
    • C. Chicone F. Dumortier A quadratic system with a nonmonotonic period function Proc. Amer. Math. Soc. 102 1988 706-710
    • (1988) Proc. Amer. Math. Soc. , vol.102 , pp. 706-710
    • Chicone, C.1    Dumortier, F.2
  • 4
    • 0011628950 scopus 로고
    • Finiteness for critical periods of planar analytic vector fields
    • C. Chicone F. Dumortier Finiteness for critical periods of planar analytic vector fields Nonlinear Anal. 20 1993 315-335
    • (1993) Nonlinear Anal. , vol.20 , pp. 315-335
    • Chicone, C.1    Dumortier, F.2
  • 5
    • 0000539993 scopus 로고
    • Bifurcations of critical periods for plane vector fields
    • C. Chicone M. Jacobs Bifurcations of critical periods for plane vector fields Trans. Amer. Math. Soc. 312 1989 433-486
    • (1989) Trans. Amer. Math. Soc. , vol.312 , pp. 433-486
    • Chicone, C.1    Jacobs, M.2
  • 7
    • 0002866305 scopus 로고
    • On the monotonicity of the period function of some second order equations
    • S.N. Chow D. Wang On the monotonicity of the period function of some second order equations Casopis Pest. Mat. 11 1986 14-25
    • (1986) Casopis Pest. Mat. , vol.11 , pp. 14-25
    • Chow, S.N.1    Wang, D.2
  • 8
    • 0039971668 scopus 로고    scopus 로고
    • Isochronous centers in planar polynomial systems
    • C.J. Christopher J. Devlin Isochronous centers in planar polynomial systems SIAM J. Math. Anal. 28 1997 162-177
    • (1997) SIAM J. Math. Anal. , vol.28 , pp. 162-177
    • Christopher, C.J.1    Devlin, J.2
  • 9
    • 0035876989 scopus 로고    scopus 로고
    • Isochronicity into a family of time-reversible cubic vector fields
    • J. Chavarriga I.A. García J. Giné Isochronicity into a family of time-reversible cubic vector fields Appl. Math. Comput. 121 2001 129-145
    • (2001) Appl. Math. Comput. , vol.121 , pp. 129-145
    • Chavarriga, J.1    García, I.A.2    Giné, J.3
  • 12
  • 14
    • 0002809127 scopus 로고
    • Uniformly isochronous centers of polynomial system in R2
    • R. Conti Uniformly isochronous centers of polynomial system in R 2 Lecture Notes in Pure Appl. Math. 152 1994 21-31
    • (1994) Lecture Notes in Pure Appl. Math. , vol.152 , pp. 21-31
    • Conti, R.1
  • 15
    • 84972541905 scopus 로고
    • The period function of a Hamiltonian quadratic system
    • W.A. Coppel L. Gavrilov The period function of a Hamiltonian quadratic system Differential Integral Equations 6 1993 1357-1365
    • (1993) Differential Integral Equations , vol.6 , pp. 1357-1365
    • Coppel, W.A.1    Gavrilov, L.2
  • 16
    • 0037374648 scopus 로고    scopus 로고
    • Perturbation from an elliptic Hamiltonian of degree four. IV. Figure eight-loop
    • F. Dumortier C. Li Perturbation from an elliptic Hamiltonian of degree four. IV. Figure eight-loop J. Differential Equations 188 2003 512-554
    • (2003) J. Differential Equations , vol.188 , pp. 512-554
    • Dumortier, F.1    Li, C.2
  • 17
    • 0000047477 scopus 로고    scopus 로고
    • The first derivative of the period function of a plane vector field
    • J.P. Francoise The first derivative of the period function of a plane vector field Publ. Mat. 41 1997 127-134
    • (1997) Publ. Mat. , vol.41 , pp. 127-134
    • Francoise, J.P.1
  • 18
    • 0000415618 scopus 로고    scopus 로고
    • The period function for Hamiltonian system with homogeneous nonlinearities
    • A. Gasull A. Guillamon V. Manosa F. Manosas The period function for Hamiltonian system with homogeneous nonlinearities J. Differential Equations 139 1997 237-260
    • (1997) J. Differential Equations , vol.139 , pp. 237-260
    • Gasull, A.1    Guillamon, A.2    Manosa, V.3    Manosas, F.4
  • 19
    • 38249004764 scopus 로고
    • Remark on the number of critical points of period
    • L. Gavrilov Remark on the number of critical points of period J. Differential Equations 101 1993 58-65
    • (1993) J. Differential Equations , vol.101 , pp. 58-65
    • Gavrilov, L.1
  • 20
    • 0000445879 scopus 로고    scopus 로고
    • Isochronicity of plane polynomial Hamiltonian systems
    • L. Gavrilov Isochronicity of plane polynomial Hamiltonian systems Nonlinearity 10 1997 433-448
    • (1997) Nonlinearity , vol.10 , pp. 433-448
    • Gavrilov, L.1
  • 21
    • 0035580227 scopus 로고    scopus 로고
    • The infinitesimal 16th Hilbert problem in quadratic case
    • L. Gavrilov The infinitesimal 16th Hilbert problem in quadratic case Invent. Math. 143 2001 449-497
    • (2001) Invent. Math. , vol.143 , pp. 449-497
    • Gavrilov, L.1
  • 22
    • 0003206189 scopus 로고    scopus 로고
    • The real period function of A3 singularity and perturbation of the spherical pendulum
    • L. Gavrilov O. Vivolo The real period function of A3 singularity and perturbation of the spherical pendulum Compositio Math. 123 2000 167-184
    • (2000) Compositio Math. , vol.123 , pp. 167-184
    • Gavrilov, L.1    Vivolo, O.2
  • 24
    • 0000857278 scopus 로고
    • A remark on the period of the period solution in the Lotka-Volterra system
    • S.-B. Hsu A remark on the period of the period solution in the Lotka-Volterra system J. Math. Anal. Appl. 95 1983 428-436
    • (1983) J. Math. Anal. Appl. , vol.95 , pp. 428-436
    • Hsu, S.-B.1
  • 26
    • 21944453138 scopus 로고    scopus 로고
    • Inhomogeneous Fuchs equations and the limit cycles in a class of near-integrable quadratic systems
    • I.D. Iliev Inhomogeneous Fuchs equations and the limit cycles in a class of near-integrable quadratic systems Proc. Roy. Soc. Edinburgh Sect. A 127 1997 1207-1217
    • (1997) Proc. Roy. Soc. Edinburgh Sect. A , vol.127 , pp. 1207-1217
    • Iliev, I.D.1
  • 27
    • 0032020006 scopus 로고    scopus 로고
    • Perturbations of quadratic centers
    • I.D. Iliev Perturbations of quadratic centers Bull. Sci. Math. 122 1998 107-161
    • (1998) Bull. Sci. Math. , vol.122 , pp. 107-161
    • Iliev, I.D.1
  • 28
    • 0002487294 scopus 로고
    • Behaviour of the period of solutions of certain plane autonomous systems near centers
    • W.S. Loud Behaviour of the period of solutions of certain plane autonomous systems near centers Contrib. Differential Equations 3 1964 21-36
    • (1964) Contrib. Differential Equations , vol.3 , pp. 21-36
    • Loud, W.S.1
  • 30
    • 0034258121 scopus 로고    scopus 로고
    • Linear estimate for the number of zeros of Abelian integrals for some quadratic isochronous centers
    • C. Li W. Li J. Llibre Z. Zhang Linear estimate for the number of zeros of Abelian integrals for some quadratic isochronous centers Nonlinearity 13 2000 1775-1880
    • (2000) Nonlinearity , vol.13 , pp. 1775-1880
    • Li, C.1    Li, W.2    Llibre, J.3    Zhang, Z.4
  • 31
    • 0001228987 scopus 로고    scopus 로고
    • Darboux linearization and isochronous centers with rational first integral
    • P. Mardesic L. Moser-Jauslin C. Rousseau Darboux linearization and isochronous centers with rational first integral J. Differential Equations 134 1997 216-268
    • (1997) J. Differential Equations , vol.134 , pp. 216-268
    • Mardesic, P.1    Moser-Jauslin, L.2    Rousseau, C.3
  • 33
    • 21844508050 scopus 로고
    • Simple exponential estimate for the number of real zeros of complete Abelian integrals
    • D. Novikov S. Yakovenko Simple exponential estimate for the number of real zeros of complete Abelian integrals Ann. Inst. Fourier 45 1995 897-927
    • (1995) Ann. Inst. Fourier , vol.45 , pp. 897-927
    • Novikov, D.1    Yakovenko, S.2
  • 35
    • 22044440647 scopus 로고    scopus 로고
    • On the nonoscillation of elliptic integrals
    • G.S. Petrov On the nonoscillation of elliptic integrals Funktsional. Anal. i Prilozhen 31 1997 47-51
    • (1997) Funktsional. Anal. I Prilozhen , vol.31 , pp. 47-51
    • Petrov, G.S.1
  • 36
    • 0001639716 scopus 로고
    • A new method of investigating the isochronicity of a system of two differential equations
    • I. Pleshkan A new method of investigating the isochronicity of a system of two differential equations Differential Equations 5 1969 796-802
    • (1969) Differential Equations , vol.5 , pp. 796-802
    • Pleshkan, I.1
  • 37
    • 0001417925 scopus 로고
    • Thermodynamics, real and complex periods of the Volterra model
    • F. Rothe Thermodynamics, real and complex periods of the Volterra model Z. Angew. Math. Phys. 36 1985 395-421
    • (1985) Z. Angew. Math. Phys. , vol.36 , pp. 395-421
    • Rothe, F.1
  • 38
    • 84920547916 scopus 로고
    • The periods of the Volterra-Lotka system
    • F. Rothe The periods of the Volterra-Lotka system J. Reine Angew. Math. 355 1985 129-138
    • (1985) J. Reine Angew. Math. , vol.355 , pp. 129-138
    • Rothe, F.1
  • 40
    • 0031508104 scopus 로고    scopus 로고
    • Local bifurcation of critical periods in the reduced Kukles system
    • C. Rousseau B. Toni Local bifurcation of critical periods in the reduced Kukles system Canad. J. Math. 49 1997 338-358
    • (1997) Canad. J. Math. , vol.49 , pp. 338-358
    • Rousseau, C.1    Toni, B.2
  • 41
    • 0032329942 scopus 로고    scopus 로고
    • A connection between isochronous Hamiltonian centers and the Jacobian conjecture
    • M. Sabatini A connection between isochronous Hamiltonian centers and the Jacobian conjecture Nonlinear Appl. 34 1998 829-838
    • (1998) Nonlinear Appl. , vol.34 , pp. 829-838
    • Sabatini, M.1
  • 42
    • 0033095591 scopus 로고    scopus 로고
    • On the period function of Liénard system
    • M. Sabatini On the period function of Liénard system J. Differential Equations 152 1999 467-487
    • (1999) J. Differential Equations , vol.152 , pp. 467-487
    • Sabatini, M.1
  • 43
    • 3042708227 scopus 로고
    • Global behaviour of solution branches for some Neumann problems depending on one or several parameters
    • R. Schaaf Global behaviour of solution branches for some Neumann problems depending on one or several parameters J. Reine Angew. Math. 346 1984 1-31
    • (1984) J. Reine Angew. Math. , vol.346 , pp. 1-31
    • Schaaf, R.1
  • 44
    • 0002499881 scopus 로고
    • A class of Hamiltonian system with increasing periods
    • R. Schaaf A class of Hamiltonian system with increasing periods J. Reine Angew. Math. 363 1985 96-109
    • (1985) J. Reine Angew. Math. , vol.363 , pp. 96-109
    • Schaaf, R.1
  • 45
    • 0000353375 scopus 로고
    • Regularity properties of the period function near a center of planar vector fields
    • M. Villarini Regularity properties of the period function near a center of planar vector fields Nonlinear Anal. 8 1992 787-803
    • (1992) Nonlinear Anal. , vol.8 , pp. 787-803
    • Villarini, M.1
  • 46
    • 0011572650 scopus 로고
    • The period in the Volterra-Lotka predator prey model
    • J. Waldvogel The period in the Volterra-Lotka predator prey model SIAM J. Number Anal. 20 1983 1264-1272
    • (1983) SIAM J. Number Anal. , vol.20 , pp. 1264-1272
    • Waldvogel, J.1
  • 47
    • 0022661610 scopus 로고
    • The period in the Lotka-Volterra system is monotonic
    • J. Waldvogel The period in the Lotka-Volterra system is monotonic J. Math. Anal. Appl. 114 1986 178-184
    • (1986) J. Math. Anal. Appl. , vol.114 , pp. 178-184
    • Waldvogel, J.1
  • 48
    • 0002061737 scopus 로고
    • On the existence of 2π-periodic solutions of the differential equation x″+g(x)=p(t)
    • D. Wang On the existence of 2π-periodic solutions of the differential equation x ″ + g ( x ) = p ( t ) Chinese Ann. Math. Ser. A 5 1984 61-72
    • (1984) Chinese Ann. Math. Ser. A , vol.5 , pp. 61-72
    • Wang, D.1
  • 49
    • 38249037671 scopus 로고
    • 2 (x-α)(x-1)=0 (0≤α<1)
    • 2( x - α ) ( x - 1 ) = 0 ( 0 ≤ α < 1 ) Nonlinear Anal. 11 1987 1029-1050
    • (1987) Nonlinear Anal. , vol.11 , pp. 1029-1050
    • Wang, D.1
  • 51
    • 0000813963 scopus 로고
    • Quadratic systems with centers and their perturbations
    • H. Zoladek Quadratic systems with centers and their perturbations J. Differential Equations 109 1994 223-273
    • (1994) J. Differential Equations , vol.109 , pp. 223-273
    • Zoladek, H.1
  • 52
    • 0036696277 scopus 로고    scopus 로고
    • Linear estimate of the number of zeros of Abelian integrals for quadratic centers having almost all their orbits formed by cubics
    • Y. Zhao W. Li C. Li Z. Zhang Linear estimate of the number of zeros of Abelian integrals for quadratic centers having almost all their orbits formed by cubics Sci. China Ser. A 45 2002 964-974
    • (2002) Sci. China Ser. A , vol.45 , pp. 964-974
    • Zhao, Y.1    Li, W.2    Li, C.3    Zhang, Z.4
  • 53
    • 0035256188 scopus 로고    scopus 로고
    • Perturbations of the non-generic quadratic Hamiltonian vector fields with hyperbolic segment
    • Y. Zhao S. Zhu Perturbations of the non-generic quadratic Hamiltonian vector fields with hyperbolic segment Bull. Sci. Math. 125 2001 109-138
    • (2001) Bull. Sci. Math. , vol.125 , pp. 109-138
    • Zhao, Y.1    Zhu, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.