-
1
-
-
10244246145
-
The centrality of vertices in trees
-
A. Ádám, The centrality of vertices in trees, Studia Sci. Math. Hungar. 9 (1974) 285-303.
-
(1974)
Studia Sci. Math. Hungar.
, vol.9
, pp. 285-303
-
-
Ádám, A.1
-
2
-
-
0005801960
-
Some doubly exponential sequences
-
A.V Aho, N.J.A. Sloane, Some doubly exponential sequences, Fibonacci Quart. 11 (4) (1973) 429-437.
-
(1973)
Fibonacci Quart.
, vol.11
, Issue.4
, pp. 429-437
-
-
Aho, A.V.1
Sloane, N.J.A.2
-
3
-
-
0001435011
-
Distance in graphs
-
R.C. Entringer, D.E. Jackson, D.A. Snyder, Distance in graphs, Czechoslovak Math. J. 26 (101) (1976) 283-296.
-
(1976)
Czechoslovak Math. J.
, vol.26
, Issue.101
, pp. 283-296
-
-
Entringer, R.C.1
Jackson, D.E.2
Snyder, D.A.3
-
4
-
-
84867959152
-
Wiener index versus maximum degree in trees
-
M. Fischermann, A. Hoffmann, D. Rautenbach, L.A. Székely, L. Volkmann, Wiener index versus maximum degree in trees, Discrete Appl. Math. 122 (1-3) (2002) 127-137.
-
(2002)
Discrete Appl. Math.
, vol.122
, Issue.1-3
, pp. 127-137
-
-
Fischermann, M.1
Hoffmann, A.2
Rautenbach, D.3
Székely, L.A.4
Volkmann, L.5
-
5
-
-
84867971430
-
Superdominance order and distance of trees with bounded maximum degree
-
F. Jelen, E. Triesch, Superdominance order and distance of trees with bounded maximum degree, Discrete Appl. Math. 125 (2-3) (2003) 225-233.
-
(2003)
Discrete Appl. Math.
, vol.125
, Issue.2-3
, pp. 225-233
-
-
Jelen, F.1
Triesch, E.2
-
6
-
-
84942401057
-
Sur les assemblages de lignes
-
C. Jordan, Sur les assemblages de lignes, J. Reine Angew. Math. 70 (1869) 185-190.
-
(1869)
J. Reine Angew. Math.
, vol.70
, pp. 185-190
-
-
Jordan, C.1
-
7
-
-
21144431642
-
Optimal multiple parsimony alignment with affine gap cost using a phylogenetic tree
-
Springer-Verlag
-
B. Knudsen, Optimal multiple parsimony alignment with affine gap cost using a phylogenetic tree, in: Lecture Notes in Bioinformatics, vol. 2812, Springer-Verlag, 2003, pp. 433-446.
-
(2003)
Lecture Notes in Bioinformatics
, vol.2812
, pp. 433-446
-
-
Knudsen, B.1
-
10
-
-
85030826972
-
Binary trees with the largest number of subtrees
-
submitted for publication
-
L.A. Székely, H. Wang, Binary trees with the largest number of subtrees, submitted for publication.
-
-
-
Székely, L.A.1
Wang, H.2
-
11
-
-
10244223558
-
On subtrees of trees
-
2004 Industrial Mathematics Institute Research Reports 04:04, University of South Carolina
-
L.A. Székely, H. Wang, On subtrees of trees, 2004 Industrial Mathematics Institute Research Reports 04:04, University of South Carolina, http://www.math.sc.edti/∼imip/04.html.
-
-
-
Székely, L.A.1
Wang, H.2
-
12
-
-
10244224808
-
Some results on trees
-
PhD Thesis, Department of Mathematics, University of South Carolina, (anticipated)
-
H. Wang, Some results on trees, PhD Thesis, Department of Mathematics, University of South Carolina, 2005 (anticipated).
-
(2005)
-
-
Wang, H.1
-
13
-
-
0002750931
-
Medians and peripherians of trees
-
H. Zelinka, Medians and peripherians of trees, Arch. Math. (Bmo) 4 (1968) 87-95.
-
(1968)
Arch. Math. (Bmo)
, vol.4
, pp. 87-95
-
-
Zelinka, H.1
|