-
1
-
-
0242368838
-
From Markov Chains to Nonequilibrium Particle Systems
-
CHEN, M. F. (1992). From Markov Chains to Nonequilibrium Particle Systems. World Scientific, Singapore.
-
(1992)
World Scientific, Singapore.
-
-
Chen, M.F.1
-
2
-
-
0002962742
-
On the stochastic matrices associated with certain queuing processes
-
FOSTER, F. G. (1953). On the stochastic matrices associated with certain queuing processes. Ann. Math. Statist. 24, 355-360.
-
(1953)
Ann. Math. Statist.
, vol.24
, pp. 355-360
-
-
Foster, F.G.1
-
3
-
-
0000466822
-
Spectral analysis of M/G/1 and G/M/1 type Markov chains
-
GAIL, H. R., HANTLER, S. L. AND TAYLOR, B. A. (1996). Spectral analysis of M/G/1 and G/M/1 type Markov chains. Adv. Appl. Prob. 28, 114-165.
-
(1996)
Adv. Appl. Prob.
, vol.28
, pp. 114-165
-
-
Gail, H.R.1
Hantler, S.L.2
Taylor, B.A.3
-
5
-
-
0003415457
-
-
Graduate Texts Math. 40, 2nd edn. Springer, New York
-
KEMENY, J. G., SNELL, J. L. AND KNAPP, A. W. (1976). Denumerable Markov Chains (Graduate Texts Math. 40), 2nd edn. Springer, New York.
-
(1976)
Denumerable Markov Chains
-
-
Kemeny, J.G.1
Snell, J.L.2
Knapp, A.W.3
-
6
-
-
0000257712
-
Some problems in the theory of queues
-
KENDALL, D. G. (1951). Some problems in the theory of queues. J. R. Statist. Soc. B 13, 151-185.
-
(1951)
J. R. Statist. Soc. B
, vol.13
, pp. 151-185
-
-
Kendall, D.G.1
-
7
-
-
0000107197
-
Stochastic processes occurring in the theory of queues and their analysis by the method of imbedded Markov chains
-
KENDALL, D. G. (1953). Stochastic processes occurring in the theory of queues and their analysis by the method of imbedded Markov chains. Ann. Math. Statist. 24, 338-354.
-
(1953)
Ann. Math. Statist.
, vol.24
, pp. 338-354
-
-
Kendall, D.G.1
-
8
-
-
0141977229
-
Algebraic Convergence for discrete-time ergodic Markov chains
-
MAO, Y. H. (2003). Algebraic Convergence for discrete-time ergodic Markov chains. Sci. China Ser. A 46, 621-630.
-
(2003)
Sci. China Ser. A
, vol.46
, pp. 621-630
-
-
Mao, Y.H.1
-
11
-
-
0003636743
-
-
Johns Hopkins Ser. Math. Sci. 2. Johns Hopkins University Press, Baltimore, MD
-
NEUTS, M. F. (1981). Matrix-Geometric Solutions in Stochastic Models (Johns Hopkins Ser. Math. Sci. 2). Johns Hopkins University Press, Baltimore, MD.
-
(1981)
Matrix-Geometric Solutions in Stochastic Models
-
-
Neuts, M.F.1
-
13
-
-
10244234998
-
Exponential ergodicity of the M/G/1 queue
-
NEUTS, M. F. AND TEUGELS, J. L. (1969). Exponential ergodicity of the M/G/1 queue. SIAM J. Appl. Math. 17, 921-929.
-
(1969)
SIAM J. Appl. Math.
, vol.17
, pp. 921-929
-
-
Neuts, M.F.1
Teugels, J.L.2
-
14
-
-
0018753822
-
Exponential ergodicity in Markovian queueing and dam models
-
TUOMINEN, P. AND TWEEDIE, R. L. (1979). Exponential ergodicity in Markovian queueing and dam models. J. Appl. Prob. 16, 867-880.
-
(1979)
J. Appl. Prob.
, vol.16
, pp. 867-880
-
-
Tuominen, P.1
Tweedie, R.L.2
-
15
-
-
0001153782
-
Subgeometric rates of convergence of f-ergodic Markov chains
-
TUOMINEN, P. AND TWEEDIE, R. L. (1994). Subgeometric rates of convergence of f-ergodic Markov chains. Adv. Appl. Prob. 26, 775-798.
-
(1994)
Adv. Appl. Prob.
, vol.26
, pp. 775-798
-
-
Tuominen, P.1
Tweedie, R.L.2
-
16
-
-
0002179369
-
Criteria for rates of convergence of Markov chains with application to queueing and storage theory
-
London Math. Soc. Lecture Note Ser. 79, eds J. F. C. Kingman and G. E. H. Reuter, Cambridge University Press
-
TWEEDIE, R. L. (1983). Criteria for rates of convergence of Markov chains with application to queueing and storage theory. In Probability, Statistics and Analysis (London Math. Soc. Lecture Note Ser. 79), eds J. F. C. Kingman and G. E. H. Reuter, Cambridge University Press, pp. 260-276.
-
(1983)
Probability, Statistics and Analysis
, pp. 260-276
-
-
Tweedie, R.L.1
-
18
-
-
10244246350
-
Polynomial uniform convergence for standard transition functions
-
ZHANG, H. J., LIN, X. AND Hou, Z. T. (2000). Polynomial uniform convergence for standard transition functions. Chinese Ann. Math. A 21, 351-356.
-
(2000)
Chinese Ann. Math. A
, vol.21
, pp. 351-356
-
-
Zhang, H.J.1
Lin, X.2
Hou, Z.T.3
|