메뉴 건너뛰기




Volumn 41, Issue 3, 2004, Pages 639-653

Recurrence properties of autoregressive processes with super-heavy-tailed innovations

Author keywords

Autoregressive process; Heavy tail; Markov process; Recurrence; Stochastic stability; Transience

Indexed keywords


EID: 10244242692     PISSN: 00219002     EISSN: None     Source Type: Journal    
DOI: 10.1239/jap/1091543415     Document Type: Article
Times cited : (20)

References (12)
  • 1
    • 0022863898 scopus 로고
    • Mixing properties of Harris chains and autoregressive processes
    • ATHREYA, K. AND PANTULA, S. (1986). Mixing properties of Harris chains and autoregressive processes. J. Appl. Prob. 23, 880-892.
    • (1986) J. Appl. Prob. , vol.23 , pp. 880-892
    • Athreya, K.1    Pantula, S.2
  • 5
    • 0001736473 scopus 로고
    • Storage processes with general release rule and additive inputs
    • BROCKWELL, P. J., RESNICK, S. I. AND TWEEDIE, R. L. (1982). Storage processes with general release rule and additive inputs. Adv. Appl. Prob. 14, 392-433.
    • (1982) Adv. Appl. Prob. , vol.14 , pp. 392-433
    • Brockwell, P.J.1    Resnick, S.I.2    Tweedie, R.L.3
  • 6
    • 0002284829 scopus 로고    scopus 로고
    • Iterated random functions
    • DIACONIS, P. AND FREEDMAN, D. (1999). Iterated random functions. SIAM Rev. 41, 45-76.
    • (1999) SIAM Rev. , vol.41 , pp. 45-76
    • Diaconis, P.1    Freedman, D.2
  • 11
    • 84862479763 scopus 로고    scopus 로고
    • Recurrence classification for a family of non-linear storage models
    • Department of Management Science and Engineering, Stanford University
    • RAI, S., GLYNN, J. E. AND GLYNN, P. W. (2002). Recurrence classification for a family of non-linear storage models. Tech. Rep., Department of Management Science and Engineering, Stanford University. Available at http://www.stanford.edu/dept/MSandE/faculty/glynn/.
    • (2002) Tech. Rep.
    • Rai, S.1    Glynn, J.E.2    Glynn, P.W.3
  • 12
    • 0001565579 scopus 로고
    • On a stochastic difference equation and a representation of nonnegative infinitely divisible random variables
    • VERVAAT, W. (1979). On a stochastic difference equation and a representation of nonnegative infinitely divisible random variables. Adv. Appl. Prob. 11, 750-783.
    • (1979) Adv. Appl. Prob. , vol.11 , pp. 750-783
    • Vervaat, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.