메뉴 건너뛰기




Volumn 100, Issue 3-4, 1997, Pages 377-389

Riemannian curvature on the group of area-preserving diffeomorphisms (motions of fluid) of 2-sphere

Author keywords

3 j coefficients; Geodesic; Group of diffeomorphisms; Riemannian curvature tensor

Indexed keywords


EID: 10144262301     PISSN: 01672789     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0167-2789(96)00192-3     Document Type: Article
Times cited : (15)

References (13)
  • 1
    • 0010876515 scopus 로고
    • Geometry of a group of area preserving diffeomorphisms
    • T.A. Arakelyan and G.K. Savvidy, Geometry of a group of area preserving diffeomorphisms, Phys. Lett. B 223 (1) (1989) 41-46.
    • (1989) Phys. Lett. B , vol.223 , Issue.1 , pp. 41-46
    • Arakelyan, T.A.1    Savvidy, G.K.2
  • 2
    • 0001356905 scopus 로고
    • Sur la géometrie difféntielle des de Lie de dimension infinie et ses application à l'hyrodynamique des fluides parfais
    • V.I. Arnold, Sur la géometrie difféntielle des de Lie de dimension infinie et ses application à l'hyrodynamique des fluides parfais, Ann. Inst. Fourier 16 (1) (1966) 319-361.
    • (1966) Ann. Inst. Fourier , vol.16 , Issue.1 , pp. 319-361
    • Arnold, V.I.1
  • 5
    • 0001052255 scopus 로고
    • Groups of diffeomorphisms and the motion of an incompressible fluid
    • D. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. Math. 92 (1970) 102-163.
    • (1970) Ann. Math. , vol.92 , pp. 102-163
    • Ebin, D.1    Marsden, J.2
  • 6
    • 0028372509 scopus 로고
    • Motion of fluid particles and stretching on line elements of an ideal fluid
    • Y. Hattori and T. Kambe, Motion of fluid particles and stretching on line elements of an ideal fluid, Fluid Dyn. Res. 13 (1994) 97-117.
    • (1994) Fluid Dyn. Res. , vol.13 , pp. 97-117
    • Hattori, Y.1    Kambe, T.2
  • 7
    • 0004105180 scopus 로고
    • Kinematical instability and line-stretching in relation to the geodesies of fluid motion
    • Kluwer Academic Publishers, Dordrecht
    • T. Kambe, F. Nakamura and Y. Hattori, Kinematical instability and line-stretching in relation to the geodesies of fluid motion, in: Topological Aspects of the Dynamics of Fluid and Plasmas (Kluwer Academic Publishers, Dordrecht, 1992) pp. 493-504.
    • (1992) Topological Aspects of the Dynamics of Fluid and Plasmas , pp. 493-504
    • Kambe, T.1    Nakamura, F.2    Hattori, Y.3
  • 9
    • 22244461074 scopus 로고
    • Curvature of groups of diffeomorphisms preserving the measure of the 2-sphere
    • A.M. Lukatskii, Curvature of groups of diffeomorphisms preserving the measure of the 2-sphere, Functional Anal. Appl. 13 (3) (1979) 174-178.
    • (1979) Functional Anal. Appl. , vol.13 , Issue.3 , pp. 174-178
    • Lukatskii, A.M.1
  • 10
    • 0041166147 scopus 로고
    • Structure of the curvature tensor of the group of measure-preserving diffeomorphisms of a compact 2-dimensional manifold
    • A.M. Lukatskii, Structure of the curvature tensor of the group of measure-preserving diffeomorphisms of a compact 2-dimensional manifold, Siberian Math. J. 29 (1988) 947-951.
    • (1988) Siberian Math. J. , vol.29 , pp. 947-951
    • Lukatskii, A.M.1
  • 11
    • 0005828977 scopus 로고
    • Geodesies and curvature of a group of diffeomorphisms and motion of an ideal fluid
    • F. Nakamura, Y. Hattori and T. Kambe, Geodesies and curvature of a group of diffeomorphisms and motion of an ideal fluid, J. Phys. A 25 (1992) L45-L50.
    • (1992) J. Phys. A , vol.25
    • Nakamura, F.1    Hattori, Y.2    Kambe, T.3
  • 12
    • 21844491081 scopus 로고
    • Riemannian geometrical description for Lie-Poisson systems and its application to idealized magnetohydrodynamics
    • T.A. Ono, Riemannian geometrical description for Lie-Poisson systems and its application to idealized magnetohydrodynamics, J. Phys. A 28 (1995) 1737-1751.
    • (1995) J. Phys. A , vol.28 , pp. 1737-1751
    • Ono, T.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.