메뉴 건너뛰기




Volumn 14, Issue 5, 2004, Pages 497-518

AN RPCL-based indexing approach for software component classification

Author keywords

Knowledge engineering; Neural network; Rival penalized competitive learning; Software component classification

Indexed keywords

ARTIFICIAL INTELLIGENCE; DATA MINING; INFORMATION RETRIEVAL; KNOWLEDGE BASED SYSTEMS; LEARNING SYSTEMS; NEURAL NETWORKS; PROBLEM SOLVING;

EID: 10044293194     PISSN: 02181940     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0218194004001774     Document Type: Article
Times cited : (6)

References (19)
  • 3
    • 0034294101 scopus 로고    scopus 로고
    • An RPCL-based approach for Markov model identification with unknown state number
    • Y. Cheung and L. Xu, An RPCL-based approach for Markov model identification with unknown state number, IEEE Signal Processing Letters (2000), pp. 284-287.
    • (2000) IEEE Signal Processing Letters , pp. 284-287
    • Cheung, Y.1    Xu, L.2
  • 6
    • 0004063090 scopus 로고    scopus 로고
    • Prentice Hall
    • S. Haykin, Neural Network (Prentice Hall, 1999), pp. 256-312.
    • (1999) Neural Network , pp. 256-312
    • Haykin, S.1
  • 16
    • 0027629412 scopus 로고
    • Rival penalized competitive learning for clustering analysis, RBF net, and curve detection
    • L. Xu, A. Krzyzak, and E. Oja, Rival penalized competitive learning for clustering analysis, RBF net, and curve detection, IEEE Trans. on Neural Networks 4(4) (1993) 636-648.
    • (1993) IEEE Trans. on Neural Networks , vol.4 , Issue.4 , pp. 636-648
    • Xu, L.1    Krzyzak, A.2    Oja, E.3
  • 17
    • 0031628777 scopus 로고    scopus 로고
    • Rival penalized competitive learning, finite mixture, and multisets clustering
    • Anchorage, Alaska
    • L. Xu, Rival penalized competitive learning, finite mixture, and multisets clustering, in Proc. 1998 IEEE Int. Conf. on Neural Networks, Anchorage, Alaska 3 (1998) 2525-2530.
    • (1998) Proc. 1998 IEEE Int. Conf. on Neural Networks , vol.3 , pp. 2525-2530
    • Xu, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.