-
1
-
-
0003088011
-
Computation and application of Taylor polynomials with interval remainder bounds
-
M. Berz and G. Hoffstätter, Computation and application of Taylor polynomials with interval remainder bounds, Reliable Comput. 4 (1998) 83-97.
-
(1998)
Reliable Comput.
, vol.4
, pp. 83-97
-
-
Berz, M.1
Hoffstätter, G.2
-
2
-
-
0000329979
-
Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models
-
M. Berz and K. Makino, Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models, Reliable Comput. 4 (1998) 361-369.
-
(1998)
Reliable Comput.
, vol.4
, pp. 361-369
-
-
Berz, M.1
Makino, K.2
-
3
-
-
0035422693
-
Verified integration of dynamics in the solar system
-
M. Berz, K. Makino and J. Hoefkens, Verified integration of dynamics in the solar system, Nonlinear Anal. 47 (2001) 179-190.
-
(2001)
Nonlinear Anal.
, vol.47
, pp. 179-190
-
-
Berz, M.1
Makino, K.2
Hoefkens, J.3
-
6
-
-
0037773213
-
Solution of systems of polynomial equations by using Bernstein polynomials
-
eds. G. Alefeld, J. Rohn, S. Rump and T. Yamamoto (Springer, Vienna)
-
J. Garloff and A.P. Smith, Solution of systems of polynomial equations by using Bernstein polynomials, in: Symbolic Algebraic Methods and Verification Methods - Theory and Application, eds. G. Alefeld, J. Rohn, S. Rump and T. Yamamoto (Springer, Vienna, 2001) pp. 87-97.
-
(2001)
Symbolic Algebraic Methods and Verification Methods - Theory and Application
, pp. 87-97
-
-
Garloff, J.1
Smith, A.P.2
-
7
-
-
85035043897
-
A generalized interval arithmetic
-
Interval Mathematics, ed. K. Nickel, Springer, New York
-
E.R. Hansen, A generalized interval arithmetic, in: Interval Mathematics, ed. K. Nickel, Lecture Notes in Computer Science, Vol. 29 (Springer, New York, 1975) pp. 7-18.
-
(1975)
Lecture Notes in Computer Science
, vol.29
, pp. 7-18
-
-
Hansen, E.R.1
-
8
-
-
0036465832
-
Verification of invertibility of complicated functions over large domains
-
J. Hoefkens and M. Berz, Verification of invertibility of complicated functions over large domains, Reliable Comput. 8(1) (2002) 1-16.
-
(2002)
Reliable Comput.
, vol.8
, Issue.1
, pp. 1-16
-
-
Hoefkens, J.1
Berz, M.2
-
9
-
-
0003440056
-
-
Springer, London
-
L. Jaulin, M. Kieffer, O. Didrit and E. Walter, Applied Interval Analysis, with Examples in Parameter and State Estimation, Robust Control and Robotics (Springer, London, 2001).
-
(2001)
Applied Interval Analysis, with Examples in Parameter and State Estimation, Robust Control and Robotics
-
-
Jaulin, L.1
Kieffer, M.2
Didrit, O.3
Walter, E.4
-
12
-
-
0037597655
-
Where to bisect a box? A theoretical explanation of the experimental results
-
eds. G. Alefeld and R.A. Trejo, Mexico City, Mexico
-
R.B. Kearfott and V. Kreinovich, Where to bisect a box? A theoretical explanation of the experimental results, in: Proc. of MEXICON'98, Workshop on Interval Computations, 4th World Congress on Expert Systems, eds. G. Alefeld and R.A. Trejo, Mexico City, Mexico, 1998.
-
(1998)
Proc. of MEXICON'98, Workshop on Interval Computations, 4th World Congress on Expert Systems
-
-
Kearfott, R.B.1
Kreinovich, V.2
-
14
-
-
10044264179
-
Interval rational = algebraic
-
V. Kreinovich, Interval rational = algebraic, ACM SIGNUM Newsletter 30(4) (1995) 2-13.
-
(1995)
ACM SIGNUM Newsletter
, vol.30
, Issue.4
, pp. 2-13
-
-
Kreinovich, V.1
-
15
-
-
0037935537
-
Theoretical justification of a heuristic subbox selection criterion
-
V. Kreinovich and T. Csendes, Theoretical justification of a heuristic subbox selection criterion, Central European J. Oper. Res. 9(3) (2001) 255-265.
-
(2001)
Central European J. Oper. Res.
, vol.9
, Issue.3
, pp. 255-265
-
-
Kreinovich, V.1
Csendes, T.2
-
16
-
-
10044244711
-
'Interval rational = algebraic' revisited: A more computer realistic result
-
V. Kreinovich and A. Lakeyev, 'Interval rational = algebraic' revisited: A more computer realistic result, ACM SIGNUM Newsletter 31(1) (1996) 14-17.
-
(1996)
ACM SIGNUM Newsletter
, vol.31
, Issue.1
, pp. 14-17
-
-
Kreinovich, V.1
Lakeyev, A.2
-
17
-
-
0037935538
-
On a theoretical justification of the choice of epsilon-inflation in PASCAL-XSC
-
V. Kreinovich, G. Mayer and S. Starks, On a theoretical justification of the choice of epsilon-inflation in PASCAL-XSC, Reliable Comput. 3(4) (1997) 437-452.
-
(1997)
Reliable Comput.
, vol.3
, Issue.4
, pp. 437-452
-
-
Kreinovich, V.1
Mayer, G.2
Starks, S.3
-
18
-
-
10044266322
-
An optimality criterion for arithmetic of complex sets
-
V. Kreinovich and J. Wolff von Gudenberg, An optimality criterion for arithmetic of complex sets, Geombinatorics 10(1) (2000) 31-37.
-
(2000)
Geombinatorics
, vol.10
, Issue.1
, pp. 31-37
-
-
Kreinovich, V.1
Wolff Von Gudenberg, J.2
-
21
-
-
0001723770
-
An interval Hermite-Obreschkoff method for computing rigorous bounds on the solution of an initial value problem for an ordinary differential equation
-
N.S. Nedialkov and K.R. Jackson, An interval Hermite-Obreschkoff method for computing rigorous bounds on the solution of an initial value problem for an ordinary differential equation, Reliable Comput. 5(3) (1999) 289-310.
-
(1999)
Reliable Comput.
, vol.5
, Issue.3
, pp. 289-310
-
-
Nedialkov, N.S.1
Jackson, K.R.2
-
22
-
-
0035724114
-
An effective high-order interval method for validating existence and uniqueness of the solution of an IVP for an ODE
-
N.S. Nedialkov, K.R. Jackson and J.D. Pryce, An effective high-order interval method for validating existence and uniqueness of the solution of an IVP for an ODE, Reliable Comput. 7(6) (2001) 449-465.
-
(2001)
Reliable Comput.
, vol.7
, Issue.6
, pp. 449-465
-
-
Nedialkov, N.S.1
Jackson, K.R.2
Pryce, J.D.3
-
23
-
-
0012216474
-
Geometric series bounds for the local errors of Taylor methods for linear nth order ODEs
-
eds. G. Alefeld, J. Rohn, S. Rump and T. Yamamoto (Springer, Vienna)
-
M. Neher, Geometric series bounds for the local errors of Taylor methods for linear nth order ODEs, in: Symbolic Algebraic Methods and Verification Methods - Theory and Application, eds. G. Alefeld, J. Rohn, S. Rump and T. Yamamoto (Springer, Vienna, 2001) pp. 183-193.
-
(2001)
Symbolic Algebraic Methods and Verification Methods - Theory and Application
, pp. 183-193
-
-
Neher, M.1
-
25
-
-
0035152626
-
Reliable two-dimensional graphing methods for mathematical formulae with two free variables
-
August
-
J. Tupper, Reliable two-dimensional graphing methods for mathematical formulae with two free variables, in: SIGGRAPH 2001 Conf. Proc., August 2001, pp. 77-86.
-
(2001)
SIGGRAPH 2001 Conf. Proc.
, pp. 77-86
-
-
Tupper, J.1
-
26
-
-
10044234951
-
Candidate sets for complex interval arithmetic
-
eds. H. Mohanty and C. Baral, Bhubaneswar, India, 20-22 December 1999 (Tata/McGraw-Hill, New Delhi)
-
J. Wolff von Gudenberg and V. Kreinovich, Candidate sets for complex interval arithmetic, in: Trends in Information Technology, Proc. of Internat. Conf. on Information Technology ICIT'99, eds. H. Mohanty and C. Baral, Bhubaneswar, India, 20-22 December 1999 (Tata/McGraw-Hill, New Delhi, 2000) pp. 230-233.
-
(2000)
Trends in Information Technology, Proc. of Internat. Conf. on Information Technology ICIT'99
, pp. 230-233
-
-
Wolff Von Gudenberg, J.1
Kreinovich, V.2
|