-
1
-
-
0001356905
-
Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits
-
Arnold, VI. 1966. Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble), 16:319–361.
-
(1966)
Ann. Inst. Fourier (Grenoble)
, vol.16
, pp. 319-361
-
-
Arnold, V.I.1
-
3
-
-
12044254491
-
An integrable shallow water equation with peaked solitons
-
Camassa, R, and Holm, DD. 1993. An integrable shallow water equation with peaked solitons. Phys. Rev. Lett., 71:1661–1664.
-
(1993)
Phys. Rev. Lett.
, vol.71
, pp. 1661-1664
-
-
Camassa, R.1
Holm, D.D.2
-
4
-
-
56349110516
-
A new integrable shallow water equation
-
Camassa, R, Holm, DD, and Hyman, J. 1994. A new integrable shallow water equation. Adv. Appl. Mech., 31:1–33.
-
(1994)
Adv. Appl. Mech.
, vol.31
, pp. 1-33
-
-
Camassa, R.1
Holm, D.D.2
Hyman, J.3
-
5
-
-
0000213450
-
On the Cauchy problem for the periodic Camassa-Holm equation
-
Constantin, A. 1997. On the Cauchy problem for the periodic Camassa-Holm equation. J. Differen-tial Equations, 141:218–235.
-
(1997)
J. Differen-tial Equations
, vol.141
, pp. 218-235
-
-
Constantin, A.1
-
6
-
-
0035480042
-
A Lagrangian approximation to the water-wave problem
-
Constantin, A. 2001. A Lagrangian approximation to the water-wave problem. Applied Mathematics Letters, 14:789–795.
-
(2001)
Applied Mathematics Letters
, vol.14
, pp. 789-795
-
-
Constantin, A.1
-
7
-
-
0032374820
-
Well-posedness global existence and blow-up phenomena for a periodic quasi-linear hyperbolic equation
-
Constantin, A, and Escher, J. 1998. Well-posedness global existence and blow-up phenomena for a periodic quasi-linear hyperbolic equation. Comm. Pure Appl. Math., 51:475–504.
-
(1998)
Comm. Pure Appl. Math.
, vol.51
, pp. 475-504
-
-
Constantin, A.1
Escher, J.2
-
8
-
-
0000985293
-
Wave breaking for nonlinear nonlocal shallow water equations
-
Constantin, A, and Escher, J. 1998. Wave breaking for nonlinear nonlocal shallow water equations. Acta Mathematica, 181:229–243.
-
(1998)
Acta Mathematica
, vol.181
, pp. 229-243
-
-
Constantin, A.1
Escher, J.2
-
9
-
-
0034347295
-
On the blow-up rate and the blow-up set of breaking waves for a shallow water equation
-
Constantin, A, and Escher, J. 2000. On the blow-up rate and the blow-up set of breaking waves for a shallow water equation. Math. Z., 233:75–91.
-
(2000)
Math. Z.
, vol.233
, pp. 75-91
-
-
Constantin, A.1
Escher, J.2
-
10
-
-
0035622111
-
Least action principle for an integrable shallow water equation
-
Constantin, A, and Kolev, B. 2001. Least action principle for an integrable shallow water equation. J. Nonlinear Math. Phys., 8:471–474.
-
(2001)
J. Nonlinear Math. Phys.
, vol.8
, pp. 471-474
-
-
Constantin, A.1
Kolev, B.2
-
11
-
-
0042279206
-
On the geometric approach to the motion of inertial mechanical systems
-
Constantin, A, and Kolev, B. 2002. On the geometric approach to the motion of inertial mechanical systems. J. Phys. A, 35:R51–R79.
-
(2002)
J. Phys. A
, vol.35
, pp. R51-R79
-
-
Constantin, A.1
Kolev, B.2
-
12
-
-
0242350978
-
Geodesic flow on the diffeomorphism group of the circle
-
Constantin, A, and Kolev, B. 2003. Geodesic flow on the diffeomorphism group of the circle. Comment. Math. Helv., 78:787–804.
-
(2003)
Comment. Math. Helv.
, vol.78
, pp. 787-804
-
-
Constantin, A.1
Kolev, B.2
-
14
-
-
85024575969
-
Adjoint and coadjoint orbits of the Poincaré group
-
math.RT/0305442
-
Cushman, R, and van der, Kallen W. 2003. Adjoint and coadjoint orbits of the Poincaré group. ArXiv, math.RT/0305442
-
(2003)
ArXiv
-
-
Cushman, R.1
van der, K.W.2
-
15
-
-
0001052255
-
Groups of diffeomorphisms and the motion of an incompressible fluid
-
Ebin, DG, and Marsden, J. 1970. Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. of Math., 92:102–163.
-
(1970)
Ann. of Math.
, vol.92
, pp. 102-163
-
-
Ebin, D.G.1
Marsden, J.2
-
16
-
-
49049150360
-
Symplectic structures, their Bäcklund transformations and hereditary symmetries
-
Fokas, AS, and Fuchssteiner, B. 1981. Symplectic structures, their Bäcklund transformations and hereditary symmetries. Phys. D, 4:47–66.
-
(1981)
Phys. D
, vol.4
, pp. 47-66
-
-
Fokas, A.S.1
Fuchssteiner, B.2
-
17
-
-
84966236065
-
The inverse function theorem of Nash and Moser
-
Hamilton, RS. 1982. The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc. (N.S.), 7:65–222.
-
(1982)
Bull. Amer. Math. Soc. (N.S.)
, vol.7
, pp. 65-222
-
-
Hamilton, R.S.1
-
19
-
-
0037171407
-
Korteweg-de Vries and related models for water waves
-
Johnson, RS, and Camassa-Holm. 2002. Korteweg-de Vries and related models for water waves. J. Fluid Mech., 455:63–82.
-
(2002)
J. Fluid Mech.
, vol.455
, pp. 63-82
-
-
Johnson, R.S.1
Camassa-Holm2
-
21
-
-
84981754671
-
Integrals of nonlinear equations of evolution and solitary waves
-
Lax, PD. 1968. Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math., 21:467–490.
-
(1968)
Comm. Pure Appl. Math.
, vol.21
, pp. 467-490
-
-
Lax, P.D.1
|