메뉴 건너뛰기




Volumn 4, Issue , 2004, Pages 593-596

Improvement of bidirectional recurrent neural network for learning long-term dependencies

Author keywords

[No Author keywords available]

Indexed keywords

BIDIRECTIONAL RECURRENT NEURAL NETWORKS (BRNN); PROTEIN SECONDARY STRUCTURE (PSS); RECURRENT NEURAL NETWORKS (RNN); VANISHING GRADIENTS;

EID: 10044265071     PISSN: 10514651     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICPR.2004.1333842     Document Type: Conference Paper
Times cited : (4)

References (3)
  • 1
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2): 157-166, 1994.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 3
    • 0036568279 scopus 로고    scopus 로고
    • Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles
    • G. Pollastri, D. Przybylski, and P. B. B. Rost. Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins, 47:228-235, 2002.
    • (2002) Proteins , vol.47 , pp. 228-235
    • Pollastri, G.1    Przybylski, D.2    Rost, P.B.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.