메뉴 건너뛰기




Volumn , Issue , 2003, Pages

Using Tarjan's red rule for fast dependency tree construction

Author keywords

[No Author keywords available]

Indexed keywords

CONFIDENCE INTERVAL; CORRELATION MATRIX; DEPENDENCY TREES; EFFICIENT LEARNING; MUTUAL INFORMATIONS; PARTIAL KNOWLEDGE; POLYNOMIAL-TIME; SPANNING TREE ALGORITHMS;

EID: 10044251730     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (2)

References (15)
  • 3
    • 0004286298 scopus 로고    scopus 로고
    • PhD thesis, Massachusetts Institute of Technology
    • Marina Meila. Learning with Mixtures of Trees. PhD thesis, Massachusetts Institute of Technology, 1999.
    • (1999) Learning with Mixtures of Trees
    • Meila, M.1
  • 4
    • 0040973441 scopus 로고    scopus 로고
    • Bayesian network classification with continuous attributes: Getting the best of both discretization and parametric fitting
    • Jude Shavlik, editor
    • N. Friedman, M. Goldszmidt, and T. J. Lee. Bayesian Network Classification with Continuous Attributes: Getting the Best of Both Discretization and Parametric Fitting. In Jude Shavlik, editor, International Conference on Machine Learning, 1998.
    • (1998) International Conference on Machine Learning
    • Friedman, N.1    Goldszmidt, M.2    Lee, T.J.3
  • 6
    • 0001923944 scopus 로고
    • Hoeffding races: Accelerating model selection search for classification and function approximation
    • Jack D. Cowan, Gerald Tesauro, and Joshua Alspector, editors Denver, Colorado Morgan Kaufmann
    • Oded Maron and Andrew W. Moore. Hoeffding races: Accelerating model selection search for classification and function approximation. In Jack D. Cowan, Gerald Tesauro, and Joshua Alspector, editors, Advances in Neural Information Processing Systems, Volume 6, pages 59-66, Denver, Colorado, 1994. Morgan Kaufmann.
    • (1994) Advances in Neural Information Processing Systems , vol.6 , pp. 59-66
    • Maron, O.1    Moore, A.W.2
  • 9
    • 0002815587 scopus 로고    scopus 로고
    • A general method for scaling up machine learning algorithms and its application to clustering
    • Carla Brodley and Andrea Danyluk, editors San Francisco, CA Morgan Kaufmann
    • Pedro Domingos and Geoff Hulten. A general method for scaling up machine learning algorithms and its application to clustering. In Carla Brodley and Andrea Danyluk, editors, Proceeding of the 17th International Conference on Machine Learning, San Francisco, CA, 2001. Morgan Kaufmann.
    • (2001) Proceeding of the 17th International Conference on Machine Learning
    • Domingos, P.1    Hulten, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.