-
1
-
-
0001934946
-
Bounds for water waves
-
Amick, C J. 1987. Bounds for water waves. Arch. Rat. Mech. Anal, 99:91–114.
-
(1987)
Arch. Rat. Mech. Anal
, vol.99
, pp. 91-114
-
-
Amick, C.J.1
-
2
-
-
0000166670
-
On the Stokes conjecture for the wave of extreme form
-
Amick, C. J., Fraenkel, L. E., and Toland, J. F., 1982. On the Stokes conjecture for the wave of extreme form. Acta. Math, 148:193–214.
-
(1982)
Acta. Math
, vol.148
, pp. 193-214
-
-
Amick, C.J.1
Fraenkel, L.E.2
Toland, J.F.3
-
3
-
-
0000542179
-
On periodic water waves and their convergence to solitary waves in the long-wave limit
-
Amick, C. J., and Toland, J. F., 1981. On periodic water waves and their convergence to solitary waves in the long-wave limit. Phil. Trans. R. Soc., 303:633–673.
-
(1981)
Phil. Trans. R. Soc.
, vol.303
, pp. 633-673
-
-
Amick, C.J.1
Toland, J.F.2
-
4
-
-
0019656759
-
On solitary waves of finite amplitude
-
Amick, C. J., and Toland, J. F., 1981. On solitary waves of finite amplitude. Arch. Rat. Mech. Anal., 76:9–95.
-
(1981)
Arch. Rat. Mech. Anal.
, vol.76
, pp. 9-95
-
-
Amick, C.J.1
Toland, J.F.2
-
5
-
-
0000507802
-
Some remarks on the theory of surface waves of finite amplitude
-
Babenko, K. I., 1987. Some remarks on the theory of surface waves of finite amplitude. Sov. Math. Dokl., 35:599–603.
-
(1987)
Sov. Math. Dokl.
, vol.35
, pp. 599-603
-
-
Babenko, K.I.1
-
6
-
-
0032090787
-
Sur les ondes de Stokes et une conjecture de Levi-Civita
-
Buffoni, B., Dancer, E. N., and Toland, J. F., 1998. Sur les ondes de Stokes et une conjecture de Levi-Civita. C. R. Acad. Sci. Paris, Sér. 1, 326:1265–1268.
-
(1998)
C. R. Acad. Sci. Paris, Sér. 1
, vol.326
, pp. 1265-1268
-
-
Buffoni, B.1
Dancer, E.N.2
Toland, J.F.3
-
7
-
-
0034405836
-
The regularity and local bifurcation of steady periodic water waves
-
Buffoni, B., Dancer, E. N., and Toland, J. F., 2000. The regularity and local bifurcation of steady periodic water waves. Arch. Rat. Mech. Anal., 152:207–240.
-
(2000)
Arch. Rat. Mech. Anal.
, vol.152
, pp. 207-240
-
-
Buffoni, B.1
Dancer, E.N.2
Toland, J.F.3
-
8
-
-
0034384354
-
The sub-harmonic bifurcation of Stokes waves
-
Buffoni, B., Dancer, E. N., and Toland, J. F., 2000. The sub-harmonic bifurcation of Stokes waves. Arch. Rat. Mech. Anal, 152:241–271.
-
(2000)
Arch. Rat. Mech. Anal
, vol.152
, pp. 241-271
-
-
Buffoni, B.1
Dancer, E.N.2
Toland, J.F.3
-
9
-
-
0033466324
-
A multiplicity result for solitary gravity-capillary waves in deep water via critical-point theory
-
Buffoni, B., and Groves, M. D., 1999. A multiplicity result for solitary gravity-capillary waves in deep water via critical-point theory. Arch. Rat. Mech. Anal., 146:183–220.
-
(1999)
Arch. Rat. Mech. Anal.
, vol.146
, pp. 183-220
-
-
Buffoni, B.1
Groves, M.D.2
-
10
-
-
0029656885
-
A plethora of solitary gravity-capillary water waves with nearly critical Bond and Froude numbers
-
Buffoni, B., Groves, M. D., and Toland, J. F., 1996. A plethora of solitary gravity-capillary water waves with nearly critical Bond and Froude numbers. Phil. Trans. Roy. Soc. Lond. A, 354:575–607.
-
(1996)
Phil. Trans. Roy. Soc. Lond. A
, vol.354
, pp. 575-607
-
-
Buffoni, B.1
Groves, M.D.2
Toland, J.F.3
-
11
-
-
0041077610
-
Numerical solution of Nekrasov’s equation in the boundary layer near the crest for waves near the maximum height
-
Byatt-Smith, J. G., 2001. Numerical solution of Nekrasov’s equation in the boundary layer near the crest for waves near the maximum height. Stud. Appl. Math., 106:393–405.
-
(2001)
Stud. Appl. Math.
, vol.106
, pp. 393-405
-
-
Byatt-Smith, J.G.1
-
12
-
-
0037051411
-
Do true elevation gravity-capillary solitary waves exist? A numerical investigation
-
Champneys, A. R., Vanden-Broeck, J.-M., and Lord, G. J., 2002. Do true elevation gravity-capillary solitary waves exist? A numerical investigation. J. Fluid Mech., 454:403–417.
-
(2002)
J. Fluid Mech.
, vol.454
, pp. 403-417
-
-
Champneys, A.R.1
Vanden-Broeck, J.-M.2
Lord, G.J.3
-
13
-
-
0027641609
-
The computation of water waves modelled by Nekrasov’s equation
-
Chandler, G. A., and Graham, I. G., 1993. The computation of water waves modelled by Nekrasov’s equation. SIAM J. Numer. Anal., 30:1041–1065.
-
(1993)
SIAM J. Numer. Anal.
, vol.30
, pp. 1041-1065
-
-
Chandler, G.A.1
Graham, I.G.2
-
14
-
-
0018983231
-
Numerical evidence for the existence of new types of gravity wave of permanent form on deep water
-
Chen, B., and Saffman, P. G., 1980. Numerical evidence for the existence of new types of gravity wave of permanent form on deep water. Stud. Appl. Math., 62:1–21.
-
(1980)
Stud. Appl. Math.
, vol.62
, pp. 1-21
-
-
Chen, B.1
Saffman, P.G.2
-
15
-
-
0039896325
-
On the deep water wave motion
-
Constantin, A., 2001. On the deep water wave motion. J. Phys. A, 34:1405–1417.
-
(2001)
J. Phys. A
, vol.34
, pp. 1405-1417
-
-
Constantin, A.1
-
16
-
-
1242299759
-
Symmetry of steady periodic surface water waves with vorticity
-
Constantin, A., and Escher, J., 2004. Symmetry of steady periodic surface water waves with vorticity. J. Fluid Mech., 498:171–181.
-
(2004)
J. Fluid Mech.
, vol.498
, pp. 171-181
-
-
Constantin, A.1
Escher, J.2
-
17
-
-
0038391364
-
Exact periodic traveling water waves with vorticity
-
Constantin, A., and Strauss, W., 2002. Exact periodic traveling water waves with vorticity. C. R. Acad. Sci. Paris, Sér. 1, 335:797–800.
-
(2002)
C. R. Acad. Sci. Paris, Sér. 1
, vol.335
, pp. 797-800
-
-
Constantin, A.1
Strauss, W.2
-
18
-
-
1242319077
-
Exact steady periodic water waves with vorticity
-
Constantin, A., and Strauss, W., 2004. Exact steady periodic water waves with vorticity. Commun. Pure Appl. Math., 57:481–527.
-
(2004)
Commun. Pure Appl. Math.
, vol.57
, pp. 481-527
-
-
Constantin, A.1
Strauss, W.2
-
19
-
-
0037107483
-
Nonexistence of solitary water waves in three dimensions
-
Craig, W., 2002. Nonexistence of solitary water waves in three dimensions. Phil. Trans. Roy. Soc. Lond. A, 360:2127–2135.
-
(2002)
Phil. Trans. Roy. Soc. Lond. A
, vol.360
, pp. 2127-2135
-
-
Craig, W.1
-
20
-
-
0034550889
-
Traveling two and three dimensional capillary gravity water waves
-
Craig, W., and Nicholls, D. P., 2000. Traveling two and three dimensional capillary gravity water waves. SIAM J. Math. Anal., 32:323–359.
-
(2000)
SIAM J. Math. Anal.
, vol.32
, pp. 323-359
-
-
Craig, W.1
Nicholls, D.P.2
-
22
-
-
0002686768
-
Numerical simulation of gravity waves
-
Craig, W., and Sulem, C., 1993. Numerical simulation of gravity waves. J. Comp. Phys., 108:73–83.
-
(1993)
J. Comp. Phys.
, vol.108
, pp. 73-83
-
-
Craig, W.1
Sulem, C.2
-
23
-
-
84958429517
-
An exact solution for progressive capillary waves of arbitrary amplitude
-
Crapper, G. D., 1957. An exact solution for progressive capillary waves of arbitrary amplitude. J. Fluid Mech., 2:532–540.
-
(1957)
J. Fluid Mech.
, vol.2
, pp. 532-540
-
-
Crapper, G.D.1
-
24
-
-
0016890105
-
Exact large amplitude capillary waves on sheets of fluid
-
Crapper, G. D., 1976. Exact large amplitude capillary waves on sheets of fluid. J. Fluid Mech., 77:229–241.
-
(1976)
J. Fluid Mech.
, vol.77
, pp. 229-241
-
-
Crapper, G.D.1
-
25
-
-
84959788910
-
Bifurcation theory for analytic operators
-
Dancer, E. N., 1973. Bifurcation theory for analytic operators. Proc. Lond. Math. Soc., 26:359–384.
-
(1973)
Proc. Lond. Math. Soc.
, vol.26
, pp. 359-384
-
-
Dancer, E.N.1
-
26
-
-
0015735751
-
Global solution branches for positive mappings
-
Dancer, E. N., 1973. Global solution branches for positive mappings. Arch. Rat. Mech. Anal., 52:181–192.
-
(1973)
Arch. Rat. Mech. Anal.
, vol.52
, pp. 181-192
-
-
Dancer, E.N.1
-
27
-
-
84959792800
-
Global structure of the solution set of non-linear real-analytic operators
-
Dancer, E. N., 1973. Global structure of the solution set of non-linear real-analytic operators. Proc. Lond. Math. Soc., 27:747–765.
-
(1973)
Proc. Lond. Math. Soc.
, vol.27
, pp. 747-765
-
-
Dancer, E.N.1
-
28
-
-
0000107832
-
Homoclinic orbits in Hamiltonian systems
-
Devaney, R L. 1976. Homoclinic orbits in Hamiltonian systems. J. Diff. Eqns., 21:431–438.
-
(1976)
J. Diff. Eqns.
, vol.21
, pp. 431-438
-
-
Devaney, R.L.1
-
29
-
-
0035873341
-
An existence theory for three-dimensional periodic travelling gravity-capillary water waves with bounded transverse profiles
-
Groves, M D. 2001. An existence theory for three-dimensional periodic travelling gravity-capillary water waves with bounded transverse profiles. Physica D, 152–153:395–415.
-
(2001)
Physica D
, vol.152-153
, pp. 395-415
-
-
Groves, M.D.1
-
30
-
-
84867952271
-
A bifurcation theory for three-dimensional oblique travelling gravity-capillary water waves
-
Groves, M. D., and Haragus, M., 2003. A bifurcation theory for three-dimensional oblique travelling gravity-capillary water waves. J. Nonlinear Sci., 13:397–447.
-
(2003)
J. Nonlinear Sci.
, vol.13
, pp. 397-447
-
-
Groves, M.D.1
Haragus, M.2
-
31
-
-
0037107482
-
A dimension-breaking phenomenon in the theory of gravity-capillary water waves
-
Groves, M. D., Haragus, M., and Sun, S.-M., 2002. A dimension-breaking phenomenon in the theory of gravity-capillary water waves. Phil. Trans. Roy. Soc. Lond. A, 360:2189–2243.
-
(2002)
Phil. Trans. Roy. Soc. Lond. A
, vol.360
, pp. 2189-2243
-
-
Groves, M.D.1
Haragus, M.2
Sun, S.-M.3
-
32
-
-
0002951717
-
A spatial dynamics approach to three-dimensional gravity-capillary steady water waves
-
Groves, M. D., and Mielke, A., 2001. A spatial dynamics approach to three-dimensional gravity-capillary steady water waves. Proc. Roy. Soc. Edin. A, 131:83–136.
-
(2001)
Proc. Roy. Soc. Edin. A
, vol.131
, pp. 83-136
-
-
Groves, M.D.1
Mielke, A.2
-
33
-
-
0031375381
-
On variational formulations for steady water waves
-
Groves, M. D., and Toland, J. F., 1997. On variational formulations for steady water waves. Arch. Rat. Mech. Anal., 137:203–226.
-
(1997)
Arch. Rat. Mech. Anal.
, vol.137
, pp. 203-226
-
-
Groves, M.D.1
Toland, J.F.2
-
34
-
-
0002844243
-
Gravity and capillary-gravity periodic travelling waves for two superposed fluid layers, one being of infinite depth
-
Iooss, G., 1999. Gravity and capillary-gravity periodic travelling waves for two superposed fluid layers, one being of infinite depth. J. Math. Fluid Mech., 1:24–63.
-
(1999)
J. Math. Fluid Mech.
, vol.1
, pp. 24-63
-
-
Iooss, G.1
-
35
-
-
0000594292
-
Bifurcation d’ondes solitaires en présence d’une faible tension superficielle
-
Iooss, G., and Kirchgässner, K., 1990. Bifurcation d’ondes solitaires en présence d’une faible tension superficielle. C. R. Acad. Sci. Paris, Sér. 1, 311:265–268.
-
(1990)
C. R. Acad. Sci. Paris, Sér. 1
, vol.311
, pp. 265-268
-
-
Iooss, G.1
Kirchgässner, K.2
-
36
-
-
0001933877
-
Water waves for small surface tension: An approach via normal form
-
Iooss, G., and Kirchgässner, K., 1992. Water waves for small surface tension:an approach via normal form. Proc. Roy. Soc. Edin. A, 122:267–299.
-
(1992)
Proc. Roy. Soc. Edin. A
, vol.122
, pp. 267-299
-
-
Iooss, G.1
Kirchgässner, K.2
-
37
-
-
0039331554
-
Capillary gravity waves on the free surface of an inviscid fluid of infinite depth. Existence of solitary waves
-
Iooss, G., and Kirrmann, P., 1996. Capillary gravity waves on the free surface of an inviscid fluid of infinite depth. Existence of solitary waves. Arch. Rat. Mech. Anal., 136:1–19.
-
(1996)
Arch. Rat. Mech. Anal.
, vol.136
, pp. 1-19
-
-
Iooss, G.1
Kirrmann, P.2
-
38
-
-
0022904427
-
Symmetry and the bifurcation of capillary-gravity waves
-
Jones, M., and Toland, J. F., 1986. Symmetry and the bifurcation of capillary-gravity waves. Arch. Rat. Mech. Anal., 96:29–53.
-
(1986)
Arch. Rat. Mech. Anal.
, vol.96
, pp. 29-53
-
-
Jones, M.1
Toland, J.F.2
-
39
-
-
84971195530
-
On the existence theory for irrotational water waves
-
Keady, G., and Norbury, J., 1978. On the existence theory for irrotational water waves. Math. Proc. Camb. Phil. Soc., 83:137–157.
-
(1978)
Math. Proc. Camb. Phil. Soc.
, vol.83
, pp. 137-157
-
-
Keady, G.1
Norbury, J.2
-
40
-
-
0001891003
-
A bifurcation theorem for potential operators
-
Kielhöfer, H., 1988. A bifurcation theorem for potential operators. J. Func. Anal., 77:1–8.
-
(1988)
J. Func. Anal.
, vol.77
, pp. 1-8
-
-
Kielhöfer, H.1
-
41
-
-
49049138209
-
Wave solutions of reversible systems and applications
-
Kirchgässner, K., 1982. Wave solutions of reversible systems and applications. J. Diff. Eqns., 45:113–127.
-
(1982)
J. Diff. Eqns.
, vol.45
, pp. 113-127
-
-
Kirchgässner, K.1
-
42
-
-
0023702842
-
Nonlinear resonant surface waves and homoclinic bifurcation
-
Kirchgässner, K., 1988. Nonlinear resonant surface waves and homoclinic bifurcation. Adv. Appl. Math., 26:135–181.
-
(1988)
Adv. Appl. Math.
, vol.26
, pp. 135-181
-
-
Kirchgässner, K.1
-
43
-
-
50549157324
-
On the theory of steady-state waves of large amplitude
-
Krasovskii, Y. P., 1961. On the theory of steady-state waves of large amplitude. U.S.S.R. Comp. Math. and Math. Phys., 1:996–1018.
-
(1961)
U.S.S.R. Comp. Math. and Math. Phys.
, vol.1
, pp. 996-1018
-
-
Krasovskii, Y.P.1
-
44
-
-
0001647402
-
Détermination rigoureuse des ondes permanentes d’ampleur finie
-
Levi-Cività, T., 1925. Détermination rigoureuse des ondes permanentes d’ampleur finie. Math. Ann., 93:264–314.
-
(1925)
Math. Ann.
, vol.93
, pp. 264-314
-
-
Levi-Cività, T.1
-
45
-
-
0031367392
-
Orbits homoclinic to exponentially small periodic orbits for a class of reversible systems. Application to water waves
-
Lombardi, E., 1997. Orbits homoclinic to exponentially small periodic orbits for a class of reversible systems. Application to water waves. Arch. Rat. Mech. Anal., 137:227–304.
-
(1997)
Arch. Rat. Mech. Anal.
, vol.137
, pp. 227-304
-
-
Lombardi, E.1
-
46
-
-
84974513241
-
A variational principle for a fluid with a free surface
-
Luke, J. C., 1967. A variational principle for a fluid with a free surface. J. Fluid Mech., 27:395–397.
-
(1967)
J. Fluid Mech.
, vol.27
, pp. 395-397
-
-
Luke, J.C.1
-
47
-
-
84971138959
-
The Froude number for solitary waves
-
McLeod, J. B., 1984. The Froude number for solitary waves. Proc. Roy. Soc. Edin. A, 97:193–197.
-
(1984)
Proc. Roy. Soc. Edin. A
, vol.97
, pp. 193-197
-
-
McLeod, J.B.1
-
48
-
-
0040250355
-
Stokes and Krasovskii’s conjectures for the wave of greatest height
-
McLeod, J. B., 1997. Stokes and Krasovskii’s conjectures for the wave of greatest height. Stud. Appl. Math., 98:311–334.
-
(1997)
Stud. Appl. Math.
, vol.98
, pp. 311-334
-
-
McLeod, J.B.1
-
50
-
-
84980140116
-
Periodic orbits near an equilibrium and a theorem by Alan Weinstein
-
Moser, J., 1976. Periodic orbits near an equilibrium and a theorem by Alan Weinstein. Commun. Pure Appl. Math., 29:727–747.
-
(1976)
Commun. Pure Appl. Math.
, vol.29
, pp. 727-747
-
-
Moser, J.1
-
52
-
-
10044234373
-
The exact theory of steady waves on the surface of a heavy fluid
-
Nekrasov, A. I., 1951. The exact theory of steady waves on the surface of a heavy fluid. Izdat. Akad. Nauk. SSSR, Moscow
-
(1951)
Izdat. Akad. Nauk. SSSR, Moscow
-
-
Nekrasov, A.I.1
-
54
-
-
0040558218
-
Solvability of the problem of spatial gravitational waves on the surface of an ideal fluid
-
Plotnikov, P. I., 1980. Solvability of the problem of spatial gravitational waves on the surface of an ideal fluid. Sov. Phys. Dokl., 25:170–171.
-
(1980)
Sov. Phys. Dokl.
, vol.25
, pp. 170-171
-
-
Plotnikov, P.I.1
-
55
-
-
0013463858
-
A proof of the Stokes conjecture in the theory of surface waves
-
(English translation Stud. Appl. Math. 108 217–244.)
-
Plotnikov, P. I., 1982. A proof of the Stokes conjecture in the theory of surface waves. Dinamika Splosh. Sredy, 57:41–76. (English translation Stud. Appl. Math. 108 217–244.)
-
(1982)
Dinamika Splosh. Sredy
, vol.57
, pp. 41-76
-
-
Plotnikov, P.I.1
-
56
-
-
0002383559
-
Justification of the Stokes hypothesis in the theory of surface waves
-
Plotnikov, P. I., 1983. Justification of the Stokes hypothesis in the theory of surface waves. Soviet Phys. Dokl., 28
-
(1983)
Soviet Phys. Dokl.
, vol.28
-
-
Plotnikov, P.I.1
-
57
-
-
0001510878
-
Nonuniqueness of solutions of the problem of solitary waves and bifurcation of critical points of smooth functionals
-
Plotnikov, P. I., 38. Nonuniqueness of solutions of the problem of solitary waves and bifurcation of critical points of smooth functionals. Math. USSR Izvestiya,:333–357.
-
Math. USSR Izvestiya
, pp. 333-357
-
-
Plotnikov, P.I.1
-
58
-
-
1642383783
-
Convexity of Stokes waves of extreme form
-
Plotnikov, P. I., and Toland, J. F., 2004. Convexity of Stokes waves of extreme form. Arch. Rat. Mech. Anal., 171:349–416.
-
(2004)
Arch. Rat. Mech. Anal.
, vol.171
, pp. 349-416
-
-
Plotnikov, P.I.1
Toland, J.F.2
-
59
-
-
0000226991
-
Three dimensional nonlinear wave interaction in water of constant depth
-
Reeder, J., and Shinbrot, M., 1981. Three dimensional nonlinear wave interaction in water of constant depth. Nonlinear Analysis TMA, 5:303–323.
-
(1981)
Nonlinear Analysis TMA
, vol.5
, pp. 303-323
-
-
Reeder, J.1
Shinbrot, M.2
-
60
-
-
0000339396
-
Considerations relative to the greatest height of oscillatory irrotational waves which can be propogated without change of form
-
Cambridge: C.U.P
-
Stokes, G. G., 1880. “ Considerations relative to the greatest height of oscillatory irrotational waves which can be propogated without change of form. ”. In Mathematical and Physical Papers, Vol. 1, 225–228. Cambridge:C.U.P.
-
(1880)
Mathematical and Physical Papers
, vol.1
, pp. 225-228
-
-
Stokes, G.G.1
-
61
-
-
0001612930
-
Nonexistence of truly solitary waves with small surface tension
-
Sun, S. M., 1999. Nonexistence of truly solitary waves with small surface tension. Proc. Roy. Soc. Lond. A, 455:2191–2228.
-
(1999)
Proc. Roy. Soc. Lond. A
, vol.455
, pp. 2191-2228
-
-
Sun, S.M.1
-
62
-
-
0018030940
-
On the existence of a wave of greatest height and Stokes’s conjecture
-
Toland, J. F., 1978. On the existence of a wave of greatest height and Stokes’s conjecture. Proc. Roy. Soc. Lond. A, 363:469–485.
-
(1978)
Proc. Roy. Soc. Lond. A
, vol.363
, pp. 469-485
-
-
Toland, J.F.1
-
64
-
-
1242319076
-
On the symmetry theory for Stokes waves of finite and infinite depth
-
Iooss G., Gues O., Nouri A., (eds), Boca Raton, Florida: Chapman & Hall/CRC
-
Toland, J. F., “ On the symmetry theory for Stokes waves of finite and infinite depth. ”. In In Monographs and Surveys in Pure and Applied Mathematics 106 — Trends in Applications of Mathematics to Mechanics, Edited by:Iooss, G., Gues, O., and Nouri, A., 207–217. Boca Raton, Florida:Chapman & Hall/CRC.
-
In Monographs and Surveys in Pure and Applied Mathematics 106 — Trends in Applications of Mathematics to Mechanics
, pp. 207-217
-
-
Toland, J.F.1
-
65
-
-
0002876557
-
Centre manifolds, normal forms and elementary bifurcations
-
Vanderbauwhede, A., 1989. Centre manifolds, normal forms and elementary bifurcations. Dynamics Reported, 2:89–169.
-
(1989)
Dynamics Reported
, vol.2
, pp. 89-169
-
-
Vanderbauwhede, A.1
-
66
-
-
0000950086
-
Centre manifold theory in infinite dimensions
-
Vanderbauwhede, A., and Iooss, G., 1992. Centre manifold theory in infinite dimensions. Dynamics Reported, 1:125–163.
-
(1992)
Dynamics Reported
, vol.1
, pp. 125-163
-
-
Vanderbauwhede, A.1
Iooss, G.2
-
67
-
-
0001834355
-
Stability of periodic waves of finite amplitude on the surface of a deep fluid
-
(English translation J. Appl. Mech. Tech. Phys. (9) 190–194.)
-
Zakharov, V. E., 1968. Stability of periodic waves of finite amplitude on the surface of a deep fluid. Zh. Prikl. Mekh. Tekh. Fiz., 9:86–94. (English translation J. Appl. Mech. Tech. Phys. (9) 190–194.)
-
(1968)
Zh. Prikl. Mekh. Tekh. Fiz.
, vol.9
, pp. 86-94
-
-
Zakharov, V.E.1
|