메뉴 건너뛰기




Volumn 11, Issue 4, 2004, Pages 435-460

Steady water waves

Author keywords

[No Author keywords available]

Indexed keywords


EID: 10044240403     PISSN: 14029251     EISSN: 17760852     Source Type: Journal    
DOI: 10.2991/jnmp.2004.11.4.2     Document Type: Article
Times cited : (71)

References (67)
  • 1
    • 0001934946 scopus 로고
    • Bounds for water waves
    • Amick, C J. 1987. Bounds for water waves. Arch. Rat. Mech. Anal, 99:91–114.
    • (1987) Arch. Rat. Mech. Anal , vol.99 , pp. 91-114
    • Amick, C.J.1
  • 2
    • 0000166670 scopus 로고
    • On the Stokes conjecture for the wave of extreme form
    • Amick, C. J., Fraenkel, L. E., and Toland, J. F., 1982. On the Stokes conjecture for the wave of extreme form. Acta. Math, 148:193–214.
    • (1982) Acta. Math , vol.148 , pp. 193-214
    • Amick, C.J.1    Fraenkel, L.E.2    Toland, J.F.3
  • 3
    • 0000542179 scopus 로고
    • On periodic water waves and their convergence to solitary waves in the long-wave limit
    • Amick, C. J., and Toland, J. F., 1981. On periodic water waves and their convergence to solitary waves in the long-wave limit. Phil. Trans. R. Soc., 303:633–673.
    • (1981) Phil. Trans. R. Soc. , vol.303 , pp. 633-673
    • Amick, C.J.1    Toland, J.F.2
  • 4
    • 0019656759 scopus 로고
    • On solitary waves of finite amplitude
    • Amick, C. J., and Toland, J. F., 1981. On solitary waves of finite amplitude. Arch. Rat. Mech. Anal., 76:9–95.
    • (1981) Arch. Rat. Mech. Anal. , vol.76 , pp. 9-95
    • Amick, C.J.1    Toland, J.F.2
  • 5
    • 0000507802 scopus 로고
    • Some remarks on the theory of surface waves of finite amplitude
    • Babenko, K. I., 1987. Some remarks on the theory of surface waves of finite amplitude. Sov. Math. Dokl., 35:599–603.
    • (1987) Sov. Math. Dokl. , vol.35 , pp. 599-603
    • Babenko, K.I.1
  • 7
    • 0034405836 scopus 로고    scopus 로고
    • The regularity and local bifurcation of steady periodic water waves
    • Buffoni, B., Dancer, E. N., and Toland, J. F., 2000. The regularity and local bifurcation of steady periodic water waves. Arch. Rat. Mech. Anal., 152:207–240.
    • (2000) Arch. Rat. Mech. Anal. , vol.152 , pp. 207-240
    • Buffoni, B.1    Dancer, E.N.2    Toland, J.F.3
  • 8
  • 9
    • 0033466324 scopus 로고    scopus 로고
    • A multiplicity result for solitary gravity-capillary waves in deep water via critical-point theory
    • Buffoni, B., and Groves, M. D., 1999. A multiplicity result for solitary gravity-capillary waves in deep water via critical-point theory. Arch. Rat. Mech. Anal., 146:183–220.
    • (1999) Arch. Rat. Mech. Anal. , vol.146 , pp. 183-220
    • Buffoni, B.1    Groves, M.D.2
  • 10
    • 0029656885 scopus 로고    scopus 로고
    • A plethora of solitary gravity-capillary water waves with nearly critical Bond and Froude numbers
    • Buffoni, B., Groves, M. D., and Toland, J. F., 1996. A plethora of solitary gravity-capillary water waves with nearly critical Bond and Froude numbers. Phil. Trans. Roy. Soc. Lond. A, 354:575–607.
    • (1996) Phil. Trans. Roy. Soc. Lond. A , vol.354 , pp. 575-607
    • Buffoni, B.1    Groves, M.D.2    Toland, J.F.3
  • 11
    • 0041077610 scopus 로고    scopus 로고
    • Numerical solution of Nekrasov’s equation in the boundary layer near the crest for waves near the maximum height
    • Byatt-Smith, J. G., 2001. Numerical solution of Nekrasov’s equation in the boundary layer near the crest for waves near the maximum height. Stud. Appl. Math., 106:393–405.
    • (2001) Stud. Appl. Math. , vol.106 , pp. 393-405
    • Byatt-Smith, J.G.1
  • 12
    • 0037051411 scopus 로고    scopus 로고
    • Do true elevation gravity-capillary solitary waves exist? A numerical investigation
    • Champneys, A. R., Vanden-Broeck, J.-M., and Lord, G. J., 2002. Do true elevation gravity-capillary solitary waves exist? A numerical investigation. J. Fluid Mech., 454:403–417.
    • (2002) J. Fluid Mech. , vol.454 , pp. 403-417
    • Champneys, A.R.1    Vanden-Broeck, J.-M.2    Lord, G.J.3
  • 13
    • 0027641609 scopus 로고
    • The computation of water waves modelled by Nekrasov’s equation
    • Chandler, G. A., and Graham, I. G., 1993. The computation of water waves modelled by Nekrasov’s equation. SIAM J. Numer. Anal., 30:1041–1065.
    • (1993) SIAM J. Numer. Anal. , vol.30 , pp. 1041-1065
    • Chandler, G.A.1    Graham, I.G.2
  • 14
    • 0018983231 scopus 로고
    • Numerical evidence for the existence of new types of gravity wave of permanent form on deep water
    • Chen, B., and Saffman, P. G., 1980. Numerical evidence for the existence of new types of gravity wave of permanent form on deep water. Stud. Appl. Math., 62:1–21.
    • (1980) Stud. Appl. Math. , vol.62 , pp. 1-21
    • Chen, B.1    Saffman, P.G.2
  • 15
    • 0039896325 scopus 로고    scopus 로고
    • On the deep water wave motion
    • Constantin, A., 2001. On the deep water wave motion. J. Phys. A, 34:1405–1417.
    • (2001) J. Phys. A , vol.34 , pp. 1405-1417
    • Constantin, A.1
  • 16
    • 1242299759 scopus 로고    scopus 로고
    • Symmetry of steady periodic surface water waves with vorticity
    • Constantin, A., and Escher, J., 2004. Symmetry of steady periodic surface water waves with vorticity. J. Fluid Mech., 498:171–181.
    • (2004) J. Fluid Mech. , vol.498 , pp. 171-181
    • Constantin, A.1    Escher, J.2
  • 17
    • 0038391364 scopus 로고    scopus 로고
    • Exact periodic traveling water waves with vorticity
    • Constantin, A., and Strauss, W., 2002. Exact periodic traveling water waves with vorticity. C. R. Acad. Sci. Paris, Sér. 1, 335:797–800.
    • (2002) C. R. Acad. Sci. Paris, Sér. 1 , vol.335 , pp. 797-800
    • Constantin, A.1    Strauss, W.2
  • 18
    • 1242319077 scopus 로고    scopus 로고
    • Exact steady periodic water waves with vorticity
    • Constantin, A., and Strauss, W., 2004. Exact steady periodic water waves with vorticity. Commun. Pure Appl. Math., 57:481–527.
    • (2004) Commun. Pure Appl. Math. , vol.57 , pp. 481-527
    • Constantin, A.1    Strauss, W.2
  • 19
    • 0037107483 scopus 로고    scopus 로고
    • Nonexistence of solitary water waves in three dimensions
    • Craig, W., 2002. Nonexistence of solitary water waves in three dimensions. Phil. Trans. Roy. Soc. Lond. A, 360:2127–2135.
    • (2002) Phil. Trans. Roy. Soc. Lond. A , vol.360 , pp. 2127-2135
    • Craig, W.1
  • 20
    • 0034550889 scopus 로고    scopus 로고
    • Traveling two and three dimensional capillary gravity water waves
    • Craig, W., and Nicholls, D. P., 2000. Traveling two and three dimensional capillary gravity water waves. SIAM J. Math. Anal., 32:323–359.
    • (2000) SIAM J. Math. Anal. , vol.32 , pp. 323-359
    • Craig, W.1    Nicholls, D.P.2
  • 22
    • 0002686768 scopus 로고
    • Numerical simulation of gravity waves
    • Craig, W., and Sulem, C., 1993. Numerical simulation of gravity waves. J. Comp. Phys., 108:73–83.
    • (1993) J. Comp. Phys. , vol.108 , pp. 73-83
    • Craig, W.1    Sulem, C.2
  • 23
    • 84958429517 scopus 로고
    • An exact solution for progressive capillary waves of arbitrary amplitude
    • Crapper, G. D., 1957. An exact solution for progressive capillary waves of arbitrary amplitude. J. Fluid Mech., 2:532–540.
    • (1957) J. Fluid Mech. , vol.2 , pp. 532-540
    • Crapper, G.D.1
  • 24
    • 0016890105 scopus 로고
    • Exact large amplitude capillary waves on sheets of fluid
    • Crapper, G. D., 1976. Exact large amplitude capillary waves on sheets of fluid. J. Fluid Mech., 77:229–241.
    • (1976) J. Fluid Mech. , vol.77 , pp. 229-241
    • Crapper, G.D.1
  • 25
    • 84959788910 scopus 로고
    • Bifurcation theory for analytic operators
    • Dancer, E. N., 1973. Bifurcation theory for analytic operators. Proc. Lond. Math. Soc., 26:359–384.
    • (1973) Proc. Lond. Math. Soc. , vol.26 , pp. 359-384
    • Dancer, E.N.1
  • 26
    • 0015735751 scopus 로고
    • Global solution branches for positive mappings
    • Dancer, E. N., 1973. Global solution branches for positive mappings. Arch. Rat. Mech. Anal., 52:181–192.
    • (1973) Arch. Rat. Mech. Anal. , vol.52 , pp. 181-192
    • Dancer, E.N.1
  • 27
    • 84959792800 scopus 로고
    • Global structure of the solution set of non-linear real-analytic operators
    • Dancer, E. N., 1973. Global structure of the solution set of non-linear real-analytic operators. Proc. Lond. Math. Soc., 27:747–765.
    • (1973) Proc. Lond. Math. Soc. , vol.27 , pp. 747-765
    • Dancer, E.N.1
  • 28
    • 0000107832 scopus 로고
    • Homoclinic orbits in Hamiltonian systems
    • Devaney, R L. 1976. Homoclinic orbits in Hamiltonian systems. J. Diff. Eqns., 21:431–438.
    • (1976) J. Diff. Eqns. , vol.21 , pp. 431-438
    • Devaney, R.L.1
  • 29
    • 0035873341 scopus 로고    scopus 로고
    • An existence theory for three-dimensional periodic travelling gravity-capillary water waves with bounded transverse profiles
    • Groves, M D. 2001. An existence theory for three-dimensional periodic travelling gravity-capillary water waves with bounded transverse profiles. Physica D, 152–153:395–415.
    • (2001) Physica D , vol.152-153 , pp. 395-415
    • Groves, M.D.1
  • 30
    • 84867952271 scopus 로고    scopus 로고
    • A bifurcation theory for three-dimensional oblique travelling gravity-capillary water waves
    • Groves, M. D., and Haragus, M., 2003. A bifurcation theory for three-dimensional oblique travelling gravity-capillary water waves. J. Nonlinear Sci., 13:397–447.
    • (2003) J. Nonlinear Sci. , vol.13 , pp. 397-447
    • Groves, M.D.1    Haragus, M.2
  • 31
    • 0037107482 scopus 로고    scopus 로고
    • A dimension-breaking phenomenon in the theory of gravity-capillary water waves
    • Groves, M. D., Haragus, M., and Sun, S.-M., 2002. A dimension-breaking phenomenon in the theory of gravity-capillary water waves. Phil. Trans. Roy. Soc. Lond. A, 360:2189–2243.
    • (2002) Phil. Trans. Roy. Soc. Lond. A , vol.360 , pp. 2189-2243
    • Groves, M.D.1    Haragus, M.2    Sun, S.-M.3
  • 32
    • 0002951717 scopus 로고    scopus 로고
    • A spatial dynamics approach to three-dimensional gravity-capillary steady water waves
    • Groves, M. D., and Mielke, A., 2001. A spatial dynamics approach to three-dimensional gravity-capillary steady water waves. Proc. Roy. Soc. Edin. A, 131:83–136.
    • (2001) Proc. Roy. Soc. Edin. A , vol.131 , pp. 83-136
    • Groves, M.D.1    Mielke, A.2
  • 33
    • 0031375381 scopus 로고    scopus 로고
    • On variational formulations for steady water waves
    • Groves, M. D., and Toland, J. F., 1997. On variational formulations for steady water waves. Arch. Rat. Mech. Anal., 137:203–226.
    • (1997) Arch. Rat. Mech. Anal. , vol.137 , pp. 203-226
    • Groves, M.D.1    Toland, J.F.2
  • 34
    • 0002844243 scopus 로고    scopus 로고
    • Gravity and capillary-gravity periodic travelling waves for two superposed fluid layers, one being of infinite depth
    • Iooss, G., 1999. Gravity and capillary-gravity periodic travelling waves for two superposed fluid layers, one being of infinite depth. J. Math. Fluid Mech., 1:24–63.
    • (1999) J. Math. Fluid Mech. , vol.1 , pp. 24-63
    • Iooss, G.1
  • 35
    • 0000594292 scopus 로고
    • Bifurcation d’ondes solitaires en présence d’une faible tension superficielle
    • Iooss, G., and Kirchgässner, K., 1990. Bifurcation d’ondes solitaires en présence d’une faible tension superficielle. C. R. Acad. Sci. Paris, Sér. 1, 311:265–268.
    • (1990) C. R. Acad. Sci. Paris, Sér. 1 , vol.311 , pp. 265-268
    • Iooss, G.1    Kirchgässner, K.2
  • 36
    • 0001933877 scopus 로고
    • Water waves for small surface tension: An approach via normal form
    • Iooss, G., and Kirchgässner, K., 1992. Water waves for small surface tension:an approach via normal form. Proc. Roy. Soc. Edin. A, 122:267–299.
    • (1992) Proc. Roy. Soc. Edin. A , vol.122 , pp. 267-299
    • Iooss, G.1    Kirchgässner, K.2
  • 37
    • 0039331554 scopus 로고    scopus 로고
    • Capillary gravity waves on the free surface of an inviscid fluid of infinite depth. Existence of solitary waves
    • Iooss, G., and Kirrmann, P., 1996. Capillary gravity waves on the free surface of an inviscid fluid of infinite depth. Existence of solitary waves. Arch. Rat. Mech. Anal., 136:1–19.
    • (1996) Arch. Rat. Mech. Anal. , vol.136 , pp. 1-19
    • Iooss, G.1    Kirrmann, P.2
  • 38
    • 0022904427 scopus 로고
    • Symmetry and the bifurcation of capillary-gravity waves
    • Jones, M., and Toland, J. F., 1986. Symmetry and the bifurcation of capillary-gravity waves. Arch. Rat. Mech. Anal., 96:29–53.
    • (1986) Arch. Rat. Mech. Anal. , vol.96 , pp. 29-53
    • Jones, M.1    Toland, J.F.2
  • 39
    • 84971195530 scopus 로고
    • On the existence theory for irrotational water waves
    • Keady, G., and Norbury, J., 1978. On the existence theory for irrotational water waves. Math. Proc. Camb. Phil. Soc., 83:137–157.
    • (1978) Math. Proc. Camb. Phil. Soc. , vol.83 , pp. 137-157
    • Keady, G.1    Norbury, J.2
  • 40
    • 0001891003 scopus 로고
    • A bifurcation theorem for potential operators
    • Kielhöfer, H., 1988. A bifurcation theorem for potential operators. J. Func. Anal., 77:1–8.
    • (1988) J. Func. Anal. , vol.77 , pp. 1-8
    • Kielhöfer, H.1
  • 41
    • 49049138209 scopus 로고
    • Wave solutions of reversible systems and applications
    • Kirchgässner, K., 1982. Wave solutions of reversible systems and applications. J. Diff. Eqns., 45:113–127.
    • (1982) J. Diff. Eqns. , vol.45 , pp. 113-127
    • Kirchgässner, K.1
  • 42
    • 0023702842 scopus 로고
    • Nonlinear resonant surface waves and homoclinic bifurcation
    • Kirchgässner, K., 1988. Nonlinear resonant surface waves and homoclinic bifurcation. Adv. Appl. Math., 26:135–181.
    • (1988) Adv. Appl. Math. , vol.26 , pp. 135-181
    • Kirchgässner, K.1
  • 43
    • 50549157324 scopus 로고
    • On the theory of steady-state waves of large amplitude
    • Krasovskii, Y. P., 1961. On the theory of steady-state waves of large amplitude. U.S.S.R. Comp. Math. and Math. Phys., 1:996–1018.
    • (1961) U.S.S.R. Comp. Math. and Math. Phys. , vol.1 , pp. 996-1018
    • Krasovskii, Y.P.1
  • 44
    • 0001647402 scopus 로고
    • Détermination rigoureuse des ondes permanentes d’ampleur finie
    • Levi-Cività, T., 1925. Détermination rigoureuse des ondes permanentes d’ampleur finie. Math. Ann., 93:264–314.
    • (1925) Math. Ann. , vol.93 , pp. 264-314
    • Levi-Cività, T.1
  • 45
    • 0031367392 scopus 로고    scopus 로고
    • Orbits homoclinic to exponentially small periodic orbits for a class of reversible systems. Application to water waves
    • Lombardi, E., 1997. Orbits homoclinic to exponentially small periodic orbits for a class of reversible systems. Application to water waves. Arch. Rat. Mech. Anal., 137:227–304.
    • (1997) Arch. Rat. Mech. Anal. , vol.137 , pp. 227-304
    • Lombardi, E.1
  • 46
    • 84974513241 scopus 로고
    • A variational principle for a fluid with a free surface
    • Luke, J. C., 1967. A variational principle for a fluid with a free surface. J. Fluid Mech., 27:395–397.
    • (1967) J. Fluid Mech. , vol.27 , pp. 395-397
    • Luke, J.C.1
  • 47
    • 84971138959 scopus 로고
    • The Froude number for solitary waves
    • McLeod, J. B., 1984. The Froude number for solitary waves. Proc. Roy. Soc. Edin. A, 97:193–197.
    • (1984) Proc. Roy. Soc. Edin. A , vol.97 , pp. 193-197
    • McLeod, J.B.1
  • 48
    • 0040250355 scopus 로고    scopus 로고
    • Stokes and Krasovskii’s conjectures for the wave of greatest height
    • McLeod, J. B., 1997. Stokes and Krasovskii’s conjectures for the wave of greatest height. Stud. Appl. Math., 98:311–334.
    • (1997) Stud. Appl. Math. , vol.98 , pp. 311-334
    • McLeod, J.B.1
  • 50
    • 84980140116 scopus 로고
    • Periodic orbits near an equilibrium and a theorem by Alan Weinstein
    • Moser, J., 1976. Periodic orbits near an equilibrium and a theorem by Alan Weinstein. Commun. Pure Appl. Math., 29:727–747.
    • (1976) Commun. Pure Appl. Math. , vol.29 , pp. 727-747
    • Moser, J.1
  • 52
    • 10044234373 scopus 로고
    • The exact theory of steady waves on the surface of a heavy fluid
    • Nekrasov, A. I., 1951. The exact theory of steady waves on the surface of a heavy fluid. Izdat. Akad. Nauk. SSSR, Moscow
    • (1951) Izdat. Akad. Nauk. SSSR, Moscow
    • Nekrasov, A.I.1
  • 54
    • 0040558218 scopus 로고
    • Solvability of the problem of spatial gravitational waves on the surface of an ideal fluid
    • Plotnikov, P. I., 1980. Solvability of the problem of spatial gravitational waves on the surface of an ideal fluid. Sov. Phys. Dokl., 25:170–171.
    • (1980) Sov. Phys. Dokl. , vol.25 , pp. 170-171
    • Plotnikov, P.I.1
  • 55
    • 0013463858 scopus 로고
    • A proof of the Stokes conjecture in the theory of surface waves
    • (English translation Stud. Appl. Math. 108 217–244.)
    • Plotnikov, P. I., 1982. A proof of the Stokes conjecture in the theory of surface waves. Dinamika Splosh. Sredy, 57:41–76. (English translation Stud. Appl. Math. 108 217–244.)
    • (1982) Dinamika Splosh. Sredy , vol.57 , pp. 41-76
    • Plotnikov, P.I.1
  • 56
    • 0002383559 scopus 로고
    • Justification of the Stokes hypothesis in the theory of surface waves
    • Plotnikov, P. I., 1983. Justification of the Stokes hypothesis in the theory of surface waves. Soviet Phys. Dokl., 28
    • (1983) Soviet Phys. Dokl. , vol.28
    • Plotnikov, P.I.1
  • 57
    • 0001510878 scopus 로고    scopus 로고
    • Nonuniqueness of solutions of the problem of solitary waves and bifurcation of critical points of smooth functionals
    • Plotnikov, P. I., 38. Nonuniqueness of solutions of the problem of solitary waves and bifurcation of critical points of smooth functionals. Math. USSR Izvestiya,:333–357.
    • Math. USSR Izvestiya , pp. 333-357
    • Plotnikov, P.I.1
  • 58
    • 1642383783 scopus 로고    scopus 로고
    • Convexity of Stokes waves of extreme form
    • Plotnikov, P. I., and Toland, J. F., 2004. Convexity of Stokes waves of extreme form. Arch. Rat. Mech. Anal., 171:349–416.
    • (2004) Arch. Rat. Mech. Anal. , vol.171 , pp. 349-416
    • Plotnikov, P.I.1    Toland, J.F.2
  • 59
    • 0000226991 scopus 로고
    • Three dimensional nonlinear wave interaction in water of constant depth
    • Reeder, J., and Shinbrot, M., 1981. Three dimensional nonlinear wave interaction in water of constant depth. Nonlinear Analysis TMA, 5:303–323.
    • (1981) Nonlinear Analysis TMA , vol.5 , pp. 303-323
    • Reeder, J.1    Shinbrot, M.2
  • 60
    • 0000339396 scopus 로고
    • Considerations relative to the greatest height of oscillatory irrotational waves which can be propogated without change of form
    • Cambridge: C.U.P
    • Stokes, G. G., 1880. “ Considerations relative to the greatest height of oscillatory irrotational waves which can be propogated without change of form. ”. In Mathematical and Physical Papers, Vol. 1, 225–228. Cambridge:C.U.P.
    • (1880) Mathematical and Physical Papers , vol.1 , pp. 225-228
    • Stokes, G.G.1
  • 61
    • 0001612930 scopus 로고    scopus 로고
    • Nonexistence of truly solitary waves with small surface tension
    • Sun, S. M., 1999. Nonexistence of truly solitary waves with small surface tension. Proc. Roy. Soc. Lond. A, 455:2191–2228.
    • (1999) Proc. Roy. Soc. Lond. A , vol.455 , pp. 2191-2228
    • Sun, S.M.1
  • 62
    • 0018030940 scopus 로고
    • On the existence of a wave of greatest height and Stokes’s conjecture
    • Toland, J. F., 1978. On the existence of a wave of greatest height and Stokes’s conjecture. Proc. Roy. Soc. Lond. A, 363:469–485.
    • (1978) Proc. Roy. Soc. Lond. A , vol.363 , pp. 469-485
    • Toland, J.F.1
  • 65
    • 0002876557 scopus 로고
    • Centre manifolds, normal forms and elementary bifurcations
    • Vanderbauwhede, A., 1989. Centre manifolds, normal forms and elementary bifurcations. Dynamics Reported, 2:89–169.
    • (1989) Dynamics Reported , vol.2 , pp. 89-169
    • Vanderbauwhede, A.1
  • 66
    • 0000950086 scopus 로고
    • Centre manifold theory in infinite dimensions
    • Vanderbauwhede, A., and Iooss, G., 1992. Centre manifold theory in infinite dimensions. Dynamics Reported, 1:125–163.
    • (1992) Dynamics Reported , vol.1 , pp. 125-163
    • Vanderbauwhede, A.1    Iooss, G.2
  • 67
    • 0001834355 scopus 로고
    • Stability of periodic waves of finite amplitude on the surface of a deep fluid
    • (English translation J. Appl. Mech. Tech. Phys. (9) 190–194.)
    • Zakharov, V. E., 1968. Stability of periodic waves of finite amplitude on the surface of a deep fluid. Zh. Prikl. Mekh. Tekh. Fiz., 9:86–94. (English translation J. Appl. Mech. Tech. Phys. (9) 190–194.)
    • (1968) Zh. Prikl. Mekh. Tekh. Fiz. , vol.9 , pp. 86-94
    • Zakharov, V.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.