-
1
-
-
0021848241
-
Regulation of bone mass by mechanical strain magnitude
-
Rubin C.T., Lanyon L.E. Regulation of bone mass by mechanical strain magnitude. Calcif. Tissue Int. 37:1985;411-417.
-
(1985)
Calcif. Tissue Int.
, vol.37
, pp. 411-417
-
-
Rubin, C.T.1
Lanyon, L.E.2
-
3
-
-
0035192335
-
Mechanical loading of diaphyseal bone in vivo: The strain threshold for an osteogenic response varies with location
-
Hsieh Y.F., Robling A.G., Ambrosius W.T., Burr D.B., Turner C.H. Mechanical loading of diaphyseal bone in vivo: the strain threshold for an osteogenic response varies with location. J. Bone Miner. Res. 16:2001;2291-2297.
-
(2001)
J. Bone Miner. Res.
, vol.16
, pp. 2291-2297
-
-
Hsieh, Y.F.1
Robling, A.G.2
Ambrosius, W.T.3
Burr, D.B.4
Turner, C.H.5
-
4
-
-
0014458988
-
Influence of the long-term, continuous bending on the bone. An experimental study on the tibia of the rabbit
-
Hert J., Liskova M., Landrgot B. Influence of the long-term, continuous bending on the bone. An experimental study on the tibia of the rabbit. Folia Morphol. 17:1969;389-399.
-
(1969)
Folia Morphol.
, vol.17
, pp. 389-399
-
-
Hert, J.1
Liskova, M.2
Landrgot, B.3
-
5
-
-
0021676239
-
Static vs dynamic loads as an influence on bone remodelling
-
Lanyon L.E., Rubin C.T. Static vs dynamic loads as an influence on bone remodelling. J. Biomech. 17:1984;897-905.
-
(1984)
J. Biomech.
, vol.17
, pp. 897-905
-
-
Lanyon, L.E.1
Rubin, C.T.2
-
6
-
-
0034896710
-
Modulation of appositional and longitudinal bone growth in the rat ulna by applied static and dynamic force
-
Robling A.G., Duijvelaar K.M., Geevers J.V., Ohashi N., Turner C.H. Modulation of appositional and longitudinal bone growth in the rat ulna by applied static and dynamic force. Bone. 29:2001;105-113.
-
(2001)
Bone
, vol.29
, pp. 105-113
-
-
Robling, A.G.1
Duijvelaar, K.M.2
Geevers, J.V.3
Ohashi, N.4
Turner, C.H.5
-
7
-
-
0032190413
-
Strain rate as a controlling influence on adaptive modeling in response to dynamic loading of the ulna in growing male rats
-
Mosley J.R., Lanyon L.E. Strain rate as a controlling influence on adaptive modeling in response to dynamic loading of the ulna in growing male rats. Bone. 23:1998;313-318.
-
(1998)
Bone
, vol.23
, pp. 313-318
-
-
Mosley, J.R.1
Lanyon, L.E.2
-
8
-
-
0020442377
-
The influence of strain rate on adaptive bone remodelling
-
O'Connor J.A., Lanyon L.E., MacFie J. The influence of strain rate on adaptive bone remodelling. J. Biomech. 15:1982;767-781.
-
(1982)
J. Biomech.
, vol.15
, pp. 767-781
-
-
O'Connor, J.A.1
Lanyon, L.E.2
MacFie, J.3
-
9
-
-
0029111672
-
Mechanotransduction in bone: Role of strain rate
-
Turner C.H., Owan I., Takano Y. Mechanotransduction in bone: role of strain rate. Am. J. Physiol. 269:1995;E438-E442.
-
(1995)
Am. J. Physiol.
, vol.269
-
-
Turner, C.H.1
Owan, I.2
Takano, Y.3
-
10
-
-
0027992966
-
The response of rat tibiae to incremental bouts of mechanical loading: A quantum concept for bone formation
-
Forwood M.R., Turner C.H. The response of rat tibiae to incremental bouts of mechanical loading: a quantum concept for bone formation. Bone. 15:1994;603-609.
-
(1994)
Bone
, vol.15
, pp. 603-609
-
-
Forwood, M.R.1
Turner, C.H.2
-
11
-
-
0035992661
-
Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts
-
Robling A.G., Hinant F.M., Burr D.B., Turner C.H. Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. J. Bone Miner. Res. 17:2002;1545-1554.
-
(2002)
J. Bone Miner. Res.
, vol.17
, pp. 1545-1554
-
-
Robling, A.G.1
Hinant, F.M.2
Burr, D.B.3
Turner, C.H.4
-
12
-
-
0028024121
-
Mechanotransduction in bone: Do bone cells act as sensors of fluid flow?
-
Turner C.H., Forwood M.R., Otter M.W. Mechanotransduction in bone: do bone cells act as sensors of fluid flow? FASEB J. 8:1994;875-878.
-
(1994)
FASEB J.
, vol.8
, pp. 875-878
-
-
Turner, C.H.1
Forwood, M.R.2
Otter, M.W.3
-
13
-
-
0030804099
-
Strain gradients correlate with sites of exercise-induced bone-forming surfaces in the adult skeleton
-
Judex S., Gross T.S., Zernicke R.F. Strain gradients correlate with sites of exercise-induced bone-forming surfaces in the adult skeleton. J. Bone Miner. Res. 12:1997;1737-1745.
-
(1997)
J. Bone Miner. Res.
, vol.12
, pp. 1737-1745
-
-
Judex, S.1
Gross, T.S.2
Zernicke, R.F.3
-
14
-
-
0035064222
-
Effects of loading frequency on mechanically induced bone formation
-
Hsieh Y.F., Turner C.H. Effects of loading frequency on mechanically induced bone formation. J. Bone Miner. Res. 16:2001;918-924.
-
(2001)
J. Bone Miner. Res.
, vol.16
, pp. 918-924
-
-
Hsieh, Y.F.1
Turner, C.H.2
-
15
-
-
0027952924
-
Promotion of bony ingrowth by frequency-specific, low-amplitude mechanical strain
-
Rubin C.T., McLeod K.J. Promotion of bony ingrowth by frequency-specific, low-amplitude mechanical strain. Clin. Orthop. Relat. Res. 298:1984;165-174.
-
(1984)
Clin. Orthop. Relat. Res.
, vol.298
, pp. 165-174
-
-
Rubin, C.T.1
McLeod, K.J.2
-
16
-
-
0031655751
-
Three rules for bone adaptation to mechanical stimuli
-
Turner C.H. Three rules for bone adaptation to mechanical stimuli. Bone. 23:1998;399-407.
-
(1998)
Bone
, vol.23
, pp. 399-407
-
-
Turner, C.H.1
-
17
-
-
0028386524
-
A model for the excitation of osteocytes by mechanical loading-induced fluid shear stresses
-
Weinbaum S., Cowin S.C., Zeng Y. A model for the excitation of osteocytes by mechanical loading-induced fluid shear stresses. J. Biomech. 27:1994;339-360.
-
(1994)
J. Biomech.
, vol.27
, pp. 339-360
-
-
Weinbaum, S.1
Cowin, S.C.2
Zeng, Y.3
-
18
-
-
0034792594
-
A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix
-
You L., Cowin S.C., Schaffler M.B., Weinbaum S. A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix. J. Biomech. 34:2001;1375-1386.
-
(2001)
J. Biomech.
, vol.34
, pp. 1375-1386
-
-
You, L.1
Cowin, S.C.2
Schaffler, M.B.3
Weinbaum, S.4
-
19
-
-
0028911384
-
High frequency components of bone strain in dogs measured during various activities
-
Turner C.H., Yoshikawa T., Forwood M.R., Sun T.C., Burr D.B. High frequency components of bone strain in dogs measured during various activities. J. Biomech. 28:1995;39-44.
-
(1995)
J. Biomech.
, vol.28
, pp. 39-44
-
-
Turner, C.H.1
Yoshikawa, T.2
Forwood, M.R.3
Sun, T.C.4
Burr, D.B.5
-
20
-
-
0036862205
-
Mechanotransduction in bone: Genetic effects on mechanosensitivity in mice
-
Robling A.G., Turner C.H. Mechanotransduction in bone: genetic effects on mechanosensitivity in mice. Bone. 31:2002;562-569.
-
(2002)
Bone
, vol.31
, pp. 562-569
-
-
Robling, A.G.1
Turner, C.H.2
-
21
-
-
0037318277
-
Stochastic resonance in osteogenic response to mechanical loading
-
Tanaka S.M., Alam I.M., Turner C.H. Stochastic resonance in osteogenic response to mechanical loading. FASEB J. 17:2003;313-314.
-
(2003)
FASEB J.
, vol.17
, pp. 313-314
-
-
Tanaka, S.M.1
Alam, I.M.2
Turner, C.H.3
-
22
-
-
0023488581
-
Bone histomorphometry: Standardization of nomenclature, symbols, and units
-
Parfitt A.M., Drezner M.K., Glorieux F.H., Kanis J.A., Malluche H., Meunier P.J.et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. J. Bone Miner. Res. 2:1987;595-610.
-
(1987)
J. Bone Miner. Res.
, vol.2
, pp. 595-610
-
-
Parfitt, A.M.1
Drezner, M.K.2
Glorieux, F.H.3
Kanis, J.A.4
Malluche, H.5
Meunier, P.J.6
-
23
-
-
0032816748
-
Viscoelastic response of the rat loading model: Implications for studies of strain-adaptive bone formation
-
Hsieh Y.F., Wang T., Turner C.H. Viscoelastic response of the rat loading model: implications for studies of strain-adaptive bone formation. Bone. 25:1999;379-382.
-
(1999)
Bone
, vol.25
, pp. 379-382
-
-
Hsieh, Y.F.1
Wang, T.2
Turner, C.H.3
-
24
-
-
0028807366
-
Mechanotransduction and the functional response of bone to mechanical strain
-
Duncan R.L., Turner C.H. Mechanotransduction and the functional response of bone to mechanical strain. Calcif. Tissue Int. 57:1995;344-358.
-
(1995)
Calcif. Tissue Int.
, vol.57
, pp. 344-358
-
-
Duncan, R.L.1
Turner, C.H.2
-
25
-
-
0037295008
-
Micromechanically based poroelastic modeling of fluid flow in Haversian bone
-
Swan C.C., Lakes R.S., Brand R.A., Stewart K.J. Micromechanically based poroelastic modeling of fluid flow in Haversian bone. J. Biomech. Eng. 125:2003;25-37.
-
(2003)
J. Biomech. Eng.
, vol.125
, pp. 25-37
-
-
Swan, C.C.1
Lakes, R.S.2
Brand, R.A.3
Stewart, K.J.4
-
26
-
-
0035199411
-
Flow-induced calcium oscillations in rat osteoblasts are age, loading frequency, and shear stress dependent
-
Donahue S.W., Jacobs C.R., Donahue H.J. Flow-induced calcium oscillations in rat osteoblasts are age, loading frequency, and shear stress dependent. Am. J. Physiol. Cell Physiol. 281:2001;C1635-C1641.
-
(2001)
Am. J. Physiol. Cell Physiol.
, vol.281
-
-
Donahue, S.W.1
Jacobs, C.R.2
Donahue, H.J.3
-
27
-
-
0032212080
-
Differential effect of steady vs oscillating flow on bone cells
-
Jacobs C.R., Yellowley C.E., Davis B.R., Zhou Z., Cimbala J.M., Donahue H.J. Differential effect of steady vs oscillating flow on bone cells. J. Biomech. 31:1998;969-976.
-
(1998)
J. Biomech.
, vol.31
, pp. 969-976
-
-
Jacobs, C.R.1
Yellowley, C.E.2
Davis, B.R.3
Zhou, Z.4
Cimbala, J.M.5
Donahue, H.J.6
-
28
-
-
0036270085
-
Proliferation of human-derived osteoblast-like cells depends on the cycle number and frequency of uniaxial strain
-
Kaspar D., Seidl W., Neidlinger-Wilke C., Beck A., Claes L., Ignatius A. Proliferation of human-derived osteoblast-like cells depends on the cycle number and frequency of uniaxial strain. J. Biomech. 35:2002;873-880.
-
(2002)
J. Biomech.
, vol.35
, pp. 873-880
-
-
Kaspar, D.1
Seidl, W.2
Neidlinger-Wilke, C.3
Beck, A.4
Claes, L.5
Ignatius, A.6
-
29
-
-
0035192335
-
Mechanical loading of diaphyseal bone in vivo: The strain threshold for an osteogenic response varies with location
-
Hsieh Y.F., Robling A.G., Ambrosius W.T., Burr D.B., Turner C.H. Mechanical loading of diaphyseal bone in vivo: the strain threshold for an osteogenic response varies with location. J. Bone Miner. Res. 16:2001;2291-2297.
-
(2001)
J. Bone Miner. Res.
, vol.16
, pp. 2291-2297
-
-
Hsieh, Y.F.1
Robling, A.G.2
Ambrosius, W.T.3
Burr, D.B.4
Turner, C.H.5
-
30
-
-
0035833434
-
Low mechanical signals strengthen long bones
-
Rubin C., Turner A.S., Bain S., Mallinckrodt C., McLeod K. Low mechanical signals strengthen long bones. Nature. 412:2001;603-604.
-
(2001)
Nature
, vol.412
, pp. 603-604
-
-
Rubin, C.1
Turner, A.S.2
Bain, S.3
Mallinckrodt, C.4
McLeod, K.5
-
31
-
-
0036192588
-
Mechanical strain, induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not cortical bone
-
Rubin C., Turner A.S., Mallinckrodt C., Jerome C., McLeod K., Bain S. Mechanical strain, induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not cortical bone. Bone. 30:2002;445-452.
-
(2002)
Bone
, vol.30
, pp. 445-452
-
-
Rubin, C.1
Turner, A.S.2
Mallinckrodt, C.3
Jerome, C.4
McLeod, K.5
Bain, S.6
-
32
-
-
0036155477
-
Quantity and quality of trabecular bone in the femur are enhanced by a strongly anabolic, noninvasive mechanical intervention
-
Rubin C., Turner A.S., Muller R., Mittra E., McLeod K., Lin W.et al. Quantity and quality of trabecular bone in the femur are enhanced by a strongly anabolic, noninvasive mechanical intervention. J. Bone Miner. Res. 17:2002;349-357.
-
(2002)
J. Bone Miner. Res.
, vol.17
, pp. 349-357
-
-
Rubin, C.1
Turner, A.S.2
Muller, R.3
Mittra, E.4
McLeod, K.5
Lin, W.6
|