-
7
-
-
0040606748
-
-
edited by S. Deser and K. W. Ford (Prentice-Hall, Englewood Cliffs, NJ)
-
F. A. E. Pirani, in Brandeis Lectures on General Relativity, edited by S. Deser and K. W. Ford (Prentice-Hall, Englewood Cliffs, NJ, 1965), pp. 249-372.
-
(1965)
Brandeis Lectures on General Relativity
, pp. 249-372
-
-
Pirani, F.A.E.1
-
8
-
-
10844221973
-
-
edited by M. A. H. MacCaluum (Cambridge University Press, Cambridge, England)
-
J. Bičák, in Galaxies, Axisymmetric Systems and Relativity, edited by M. A. H. MacCaluum (Cambridge University Press, Cambridge, England, 1985), pp. 91-124.
-
(1985)
Galaxies, Axisymmetric Systems and Relativity
, pp. 91-124
-
-
Bičák, J.1
-
9
-
-
10844223129
-
-
edited by J.-A. Marck and J.-P. Lasota (Cambridge University Press, Cambridge, England)
-
J. Bičák, in Relativistic Gravitation and Gravitational Radiation, Les Hauches 1995, edited by J.-A. Marck and J.-P. Lasota (Cambridge University Press, Cambridge, England, 1997), pp. 67-87.
-
(1997)
Relativistic Gravitation and Gravitational Radiation, les Hauches 1995
, pp. 67-87
-
-
Bičák, J.1
-
10
-
-
0002250066
-
-
edited by B. G. Schmidt (Springer, Berlin)
-
J. Bičák, in Einstein's Field Equations and Their Physical Implications, edited by B. G. Schmidt (Springer, Berlin, 2000), Vol. 540, pp. 1-126.
-
(2000)
Einstein's Field Equations and Their Physical Implications
, vol.540
, pp. 1-126
-
-
Bičák, J.1
-
12
-
-
0003074871
-
-
edited by C. DeWitt and B. DeWitt (Gordon and Breach, New York)
-
R. Penrose, in Relativity, Groups and Topology, Les Hauches 1963, edited by C. DeWitt and B. DeWitt (Gordon and Breach, New York, 1964), pp. 563-584.
-
(1964)
Relativity, Groups and Topology, les Hauches 1963
, pp. 563-584
-
-
Penrose, R.1
-
14
-
-
0003981185
-
-
Cambridge University Press, Cambridge, England
-
R. Penrose and W. Rindler, Spinors and Space-Time (Cambridge University Press, Cambridge, England, 1986), Vol. 2.
-
(1986)
Spinors and Space-time
, vol.2
-
-
Penrose, R.1
Rindler, W.2
-
18
-
-
0007013788
-
-
edited by T. Gold (Cornell University Press, Ithaca, NY)
-
R. Penrose, in The Nature of Time, edited by T. Gold (Cornell University Press, Ithaca, NY, 1967), pp. 42-54.
-
(1967)
The Nature of Time
, pp. 42-54
-
-
Penrose, R.1
-
28
-
-
0001667439
-
-
T. Levi-Civita, Atti Accad. Naz. Lincei, Cl. Sci. Fis., Mat. Nat., Rend. 26, 307 (1917).
-
(1917)
Atti Accad. Naz. Lincei, Cl. Sci. Fis., Mat. Nat., Rend.
, vol.26
, pp. 307
-
-
Levi-Civita, T.1
-
29
-
-
0007167557
-
-
Leipzig
-
H. Weyl, Ann. Phys. (Leipzig) 59, 185 (1918).
-
(1918)
Ann. Phys.
, vol.59
, pp. 185
-
-
Weyl, H.1
-
31
-
-
0003599920
-
-
Cambridge University Press, Cambridge, England
-
D. Kramer, H. Stephani, E. Herlt, and M. MacCallum, Exact Solutions of Einstein's Field Equations (Cambridge University Press, Cambridge, England, 1980).
-
(1980)
Exact Solutions of Einstein's Field Equations
-
-
Kramer, D.1
Stephani, H.2
Herlt, E.3
MacCallum, M.4
-
54
-
-
0001638350
-
-
L. P. Hughston, R. Penrose, P. Sommers, and M. Walker, Commun. Math. Phys. 27, 303 (1972).
-
(1972)
Commun. Math. Phys.
, vol.27
, pp. 303
-
-
Hughston, L.P.1
Penrose, R.2
Sommers, P.3
Walker, M.4
-
55
-
-
33845701627
-
-
note
-
The symmetric product ∨ of two 1-forms is defined as a∨b = ab + ba.
-
-
-
-
57
-
-
33845699133
-
-
note
-
There is no region I in this case. The numbering of regions, starting with II, has been chosen to be consistent with the case of two black holes (cf. Figs. 4-6) and with the C-metric with Λ > 0 [20].
-
-
-
-
58
-
-
85107712939
-
-
note
-
c which separates domains containing different pairs of black holes, cf. Fig. 2(a).
-
-
-
-
59
-
-
85107713840
-
-
note
-
ζ are regular at I in the sense of the tangent space of the conformal manifold with metric (2.14), cf. Ref. [14].
-
-
-
-
60
-
-
33845703066
-
-
note
-
For the particular case of geodesics with c = 0 see Appendix A.
-
-
-
-
61
-
-
85107713624
-
-
note
-
o formally corresponds to R = ∞. Here and in the following the symbol ∝ means a proportionality with a positive factor. Thanks to this convention we do not lose information about the orientation of related vectors.
-
-
-
-
63
-
-
85107712309
-
-
note
-
2 are real, see Eq. (4.7).
-
-
-
|