메뉴 건너뛰기




Volumn E87-D, Issue 1, 2004, Pages 258-260

Boundedness of Input Space and Effective Dimension of Feature Space in Kernel Methods

Author keywords

Effective dimension; Learning theory; Support vector machine

Indexed keywords

ASYMPTOTIC STABILITY; COMPUTER SIMULATION; EIGENVALUES AND EIGENFUNCTIONS; POLYNOMIALS; STATISTICAL METHODS; VECTOR QUANTIZATION;

EID: 0842310256     PISSN: 09168532     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (1)

References (16)
  • 3
    • 0000874557 scopus 로고
    • Theoretical foundations of the potential function method in pattern recognition learning
    • M.A. Aizerman, E.M. Braverman, and L.I. Rozonoer, "Theoretical foundations of the potential function method in pattern recognition learning," Automation and Remote Control, vol.25, pp.821-837, 1964.
    • (1964) Automation and Remote Control , vol.25 , pp. 821-837
    • Aizerman, M.A.1    Braverman, E.M.2    Rozonoer, L.I.3
  • 4
    • 0021518106 scopus 로고
    • A theory of the learnable
    • L.G. Valiant, "A theory of the learnable," Commun. ACM, vol.27, pp.1134-1142, 1984.
    • (1984) Commun. ACM , vol.27 , pp. 1134-1142
    • Valiant, L.G.1
  • 5
    • 0001160588 scopus 로고
    • What size net gives valid generalization?
    • E.B. Baum and D. Haussler, "What size net gives valid generalization?," Neural Comput., vol.1, pp.151-160, 1989.
    • (1989) Neural Comput. , vol.1 , pp. 151-160
    • Baum, E.B.1    Haussler, D.2
  • 6
    • 0041081792 scopus 로고
    • Calculation of the learning curve of bayes optimal classification on algorithm for learning a perceptron with noise
    • M. Opper and D. Haussler, "Calculation of the learning curve of bayes optimal classification on algorithm for learning a perceptron with noise," Proc. COLT, vol.4, pp.75-87, 1991.
    • (1991) Proc. COLT , vol.4 , pp. 75-87
    • Opper, M.1    Haussler, D.2
  • 8
    • 0027257001 scopus 로고
    • A universal theorem on learning curves
    • S. Amari, "A universal theorem on learning curves," Neural Networks, vol.6, pp.161-166, 1993.
    • (1993) Neural Networks , vol.6 , pp. 161-166
    • Amari, S.1
  • 9
    • 0000729504 scopus 로고
    • Statistical theory of learning curves under entropic loss criterion
    • S. Amari and N. Murata, "Statistical theory of learning curves under entropic loss criterion," Neural Comput., vol.5, pp.140-153, 1993.
    • (1993) Neural Comput. , vol.5 , pp. 140-153
    • Amari, S.1    Murata, N.2
  • 10
    • 0030168461 scopus 로고    scopus 로고
    • Geometry of admissible parameter region in neural learning
    • June
    • K. Ikeda and S. Amari, "Geometry of admissible parameter region in neural learning," IEICE Trans. Fundamentals, vol.E79-A, no.6, pp.938-943, June 1996.
    • (1996) IEICE Trans. Fundamentals , vol.E79-A , Issue.6 , pp. 938-943
    • Ikeda, K.1    Amari, S.2
  • 11
    • 0000149970 scopus 로고    scopus 로고
    • Statistical mechanics of support vector networks
    • R. Dietrich, M. Opper, and H. Sompolinsky, "Statistical mechanics of support vector networks," Phys. Rev. Lett., vol.82, no.14, pp.2975-2978, 1999.
    • (1999) Phys. Rev. Lett. , vol.82 , Issue.14 , pp. 2975-2978
    • Dietrich, R.1    Opper, M.2    Sompolinsky, H.3
  • 12
    • 25944460217 scopus 로고    scopus 로고
    • Input manifold and generalization error in polynomial kernel methods
    • K. Ikeda, "Input manifold and generalization error in polynomial kernel methods," IEICE Technical Report, NC2002-194, 2003.
    • (2003) IEICE Technical Report , vol.NC2002-194
    • Ikeda, K.1
  • 13
    • 0842283738 scopus 로고    scopus 로고
    • Geometry and learning curves of kernel methods with polynomial kernels
    • July
    • K. Ikeda, "Geometry and learning curves of kernel methods with polynomial kernels," IEICE Trans. Inf. & Syst. (Japanese Edition), vol.J86-D-II, no.7, pp.918-925, July 2003.
    • (2003) IEICE Trans. Inf. & Syst. (Japanese Edition) , vol.J86-D-II , Issue.7 , pp. 918-925
    • Ikeda, K.1
  • 14
    • 35248845495 scopus 로고    scopus 로고
    • Generalization error analysis for polynomial kernel methods - Algebraic geometrical approach
    • K. Ikeda, "Generalization error analysis for polynomial kernel methods - Algebraic geometrical approach," Proc. ICANN, pp.201-208, 2003.
    • (2003) Proc. ICANN , pp. 201-208
    • Ikeda, K.1
  • 16
    • 0037822222 scopus 로고    scopus 로고
    • Asymptotic behaviors of support vector machines with Gaussian kernel
    • S.S. Keerthi and C.-J. Lin, "Asymptotic behaviors of support vector machines with Gaussian kernel," Neural Comput., vol.15, pp.1667-1689, 2003.
    • (2003) Neural Comput. , vol.15 , pp. 1667-1689
    • Keerthi, S.S.1    Lin, C.-J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.