-
1
-
-
0034898137
-
-
Kurosawa, K.; Takahashi, K.; Tsuda, E. J. Antibiot. 2001, 54, 541.
-
(2001)
J. Antibiot.
, vol.54
, pp. 541
-
-
Kurosawa, K.1
Takahashi, K.2
Tsuda, E.3
-
2
-
-
0036171669
-
-
Kurosawa, K.; Takahashi, K.; Fujise, N.; Yamashita, Y.; Washida, N.; Tsuda, E. J. Antibiot. 2002, 55, 71.
-
(2002)
J. Antibiot.
, vol.55
, pp. 71
-
-
Kurosawa, K.1
Takahashi, K.2
Fujise, N.3
Yamashita, Y.4
Washida, N.5
Tsuda, E.6
-
3
-
-
0035206547
-
-
Kurosawa, K.; Takahashi, K.; Tsuda, E.; Tomida, A.; Tsuruo, T. Jpn. J. Cancer Res. 2001, 92, 1235.
-
(2001)
Jpn. J. Cancer Res.
, vol.92
, pp. 1235
-
-
Kurosawa, K.1
Takahashi, K.2
Tsuda, E.3
Tomida, A.4
Tsuruo, T.5
-
4
-
-
0034904357
-
-
Takahashi, K.; Tsuda, E.; Kurosawa, K. J. Antibiot. 2001, 54, 548.
-
(2001)
J. Antibiot.
, vol.54
, pp. 548
-
-
Takahashi, K.1
Tsuda, E.2
Kurosawa, K.3
-
6
-
-
0001009352
-
-
Kakinuma, K.; Hanson, C. A.; Rinehart, K. L., Jr. Tetrahedron 1976, 32, 217.
-
(1976)
Tetrahedron
, vol.32
, pp. 217
-
-
Kakinuma, K.1
Hanson, C.A.2
Rinehart Jr., K.L.3
-
7
-
-
0026567324
-
-
Ishibashi, Y.; Nishiyama, S.; Shizuri, Y.; Yamamura, S. Tetrahedron Lett. 1992, 33, 521.
-
(1992)
Tetrahedron Lett.
, vol.33
, pp. 521
-
-
Ishibashi, Y.1
Nishiyama, S.2
Shizuri, Y.3
Yamamura, S.4
-
8
-
-
84970626940
-
-
(a) Bandaranayake, W. M.; Banfield, J. E.; Black, D. St. C.; Falon, G. D.; Gatehouse, B. M. Aust. J. Chem. 1981, 34, 1655.
-
(1981)
Aust. J. Chem.
, vol.34
, pp. 1655
-
-
Bandaranayake, W.M.1
Banfield, J.E.2
Black, D.St.C.3
Falon, G.D.4
Gatehouse, B.M.5
-
9
-
-
37049102319
-
-
(b) Bandaranayake, W. M.; Banfield, J. E.; Black, D. St. C. J. Chem. Soc., Chem. Commun. 1980, 19, 902.
-
(1980)
J. Chem. Soc., Chem. Commun.
, vol.19
, pp. 902
-
-
Bandaranayake, W.M.1
Banfield, J.E.2
Black, D.St.C.3
-
10
-
-
0001225884
-
-
Nicolaou, K. C.; Petasis, N. A.; Zipkin, R. E. J. Am. Chem. Soc. 1982, 104, 5560.
-
(1982)
J. Am. Chem. Soc.
, vol.104
, pp. 5560
-
-
Nicolaou, K.C.1
Petasis, N.A.2
Zipkin, R.E.3
-
11
-
-
0037126282
-
-
Moses, J. E.; Baldwin, J. E.; Marquez, R.; Adlington, R. M.; Cowley, A. R. Org. Lett. 2002, 4, 3731.
-
(2002)
Org. Lett.
, vol.4
, pp. 3731
-
-
Moses, J.E.1
Baldwin, J.E.2
Marquez, R.3
Adlington, R.M.4
Cowley, A.R.5
-
12
-
-
0043043891
-
-
Although 8π, 6π closures of 1,8-disubstituted 1,3,5,7-(E,Z,Z,E)- tetraenes proceed at low temperature (e.g., 2,4,6,8-(E,Z,Z,E)-decatetraene closes at -10°C over 30 h and the subsequent electrocylization occurs at 20°C over 8 h), closure of (Z,Z,Z,E)-tetraenes requires higher temperatures (9°C for the first step and 40°C for the second step) and the closure of Z,Z,Z,Z-substrates is even slower, affording the [4.2.0] product directly at 65°C. See: (a) Huisgen, R.; Dahmen, A.; Huber, H. J. Am. Chem. Soc. 1967, 89, 7130. (b) Huisgen, R.; Dahmen, A.; Huber, H. Tetrahedron Lett. 1969, 1461. (c) For a related example and a literature survey, see: Hayashi, R.; Fernandez, S.; Okamura, W. H. Org. Lett. 2002, 4, 851.
-
(1967)
J. Am. Chem. Soc.
, vol.89
, pp. 7130
-
-
Huisgen, R.1
Dahmen, A.2
Huber, H.3
-
13
-
-
0842322021
-
-
Although 8π, 6π closures of 1,8-disubstituted 1,3,5,7-(E,Z,Z,E)- tetraenes proceed at low temperature (e.g., 2,4,6,8-(E,Z,Z,E)-decatetraene closes at -10°C over 30 h and the subsequent electrocylization occurs at 20°C over 8 h), closure of (Z,Z,Z,E)-tetraenes requires higher temperatures (9°C for the first step and 40°C for the second step) and the closure of Z,Z,Z,Z-substrates is even slower, affording the [4.2.0] product directly at 65°C. See: (a) Huisgen, R.; Dahmen, A.; Huber, H. J. Am. Chem. Soc. 1967, 89, 7130. (b) Huisgen, R.; Dahmen, A.; Huber, H. Tetrahedron Lett. 1969, 1461. (c) For a related example and a literature survey, see: Hayashi, R.; Fernandez, S.; Okamura, W. H. Org. Lett. 2002, 4, 851.
-
Tetrahedron Lett.
, vol.1969
, pp. 1461
-
-
Huisgen, R.1
Dahmen, A.2
Huber, H.3
-
14
-
-
0037035010
-
-
Although 8π, 6π closures of 1,8-disubstituted 1,3,5,7-(E,Z,Z,E)- tetraenes proceed at low temperature (e.g., 2,4,6,8-(E,Z,Z,E)-decatetraene closes at -10°C over 30 h and the subsequent electrocylization occurs at 20°C over 8 h), closure of (Z,Z,Z,E)-tetraenes requires higher temperatures (9°C for the first step and 40°C for the second step) and the closure of Z,Z,Z,Z-substrates is even slower, affording the [4.2.0] product directly at 65°C. See: (a) Huisgen, R.; Dahmen, A.; Huber, H. J. Am. Chem. Soc. 1967, 89, 7130. (b) Huisgen, R.; Dahmen, A.; Huber, H. Tetrahedron Lett. 1969, 1461. (c) For a related example and a literature survey, see: Hayashi, R.; Fernandez, S.; Okamura, W. H. Org. Lett. 2002, 4, 851.
-
(2002)
Org. Lett.
, vol.4
, pp. 851
-
-
Hayashi, R.1
Fernandez, S.2
Okamura, W.H.3
-
15
-
-
0001717293
-
-
Thomas, B. E., IV; Evanseck, J. D.; Houk, K. N. J. Am. Chem. Soc. 1993, 115, 4165.
-
(1993)
J. Am. Chem. Soc.
, vol.115
, pp. 4165
-
-
Thomas IV, B.E.1
Evanseck, J.D.2
Houk, K.N.3
-
16
-
-
0842343691
-
-
note
-
Stannane compounds 8 were prepared from the corresponding iododienes 7; see Supporting Information.
-
-
-
-
17
-
-
0842278882
-
-
note
-
For each of the entries, the linear tetraene 9 underwent the double closure within the time frame of the coupling experiment (i.e., we never saw linear tetraene or cyclooctatriene in any of these experiments). Nuclear Overhauser experiments confirmed the stereochemical assignments of all products in Table 1.
-
-
-
-
18
-
-
0842322022
-
-
note
-
These isomers were not separated. Nevertheless, a NOE experiment on the mixture allowed assignment.
-
-
-
|