메뉴 건너뛰기




Volumn 34, Issue 1, 2004, Pages 598-608

Robust Neurofuzzy Rule Base Knowledge Extraction and Estimation Using Subspace Decomposition Combined with Regularization and D-Optimality

Author keywords

Neurofuzzy networks; Optimal experimental design; Orthogonal decomposition; Regularization; Subspace

Indexed keywords

ALGORITHMS; FUZZY CONTROL; INFORMATION RETRIEVAL; KNOWLEDGE ACQUISITION; LEAST SQUARES APPROXIMATIONS; LINEAR SYSTEMS; MATRIX ALGEBRA; NEURAL NETWORKS; PARAMETER ESTIMATION; REGRESSION ANALYSIS;

EID: 0742290017     PISSN: 10834419     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSMCB.2003.817089     Document Type: Article
Times cited : (25)

References (27)
  • 5
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • T. Takagi and M. Sugeno, "Fuzzy identification of systems and its applications to modeling and control," IEEE Trans. Syst., Man, Cybern., vol. SMC-15, pp. 116-132, 1985.
    • (1985) IEEE Trans. Syst., Man, Cybern. , vol.SMC-15 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 6
    • 0032124174 scopus 로고    scopus 로고
    • Adaptive neurofuzzy control for a class of state-dependent nonlinear processes
    • M. Feng and C. J. Harris, "Adaptive neurofuzzy control for a class of state-dependent nonlinear processes," Int. J. Syst. Sci., vol. 29, no. 7, pp. 759-771, 1998.
    • (1998) Int. J. Syst. Sci. , vol.29 , Issue.7 , pp. 759-771
    • Feng, M.1    Harris, C.J.2
  • 7
    • 0030130094 scopus 로고    scopus 로고
    • Modeling and control of nonlinear, operating point dependent systems via associative memory networks
    • H. Wang, M. Brown, and C. J. Harris, "Modeling and control of nonlinear, operating point dependent systems via associative memory networks," J. Dynam. Contr., vol. 6, pp. 199-218, 1996.
    • (1996) J. Dynam. Contr. , vol.6 , pp. 199-218
    • Wang, H.1    Brown, M.2    Harris, C.J.3
  • 10
    • 0024771664 scopus 로고
    • Orthogonal least squares methods and their applications to nonlinear system identification
    • S. Chen, S. A. Billings, and W. Luo, "Orthogonal least squares methods and their applications to nonlinear system identification," Int. J. Contr., vol. 50, pp. 1873-1896, 1989.
    • (1989) Int. J. Contr. , vol.50 , pp. 1873-1896
    • Chen, S.1    Billings, S.A.2    Luo, W.3
  • 11
    • 0032594851 scopus 로고    scopus 로고
    • Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks
    • S. Chen, Y. Wu, and B. L. Luk, "Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks," IEEE Trans. on Neural Networks, vol. 10, pp. 1239-1243, 1999.
    • (1999) IEEE Trans. on Neural Networks , vol.10 , pp. 1239-1243
    • Chen, S.1    Wu, Y.2    Luk, B.L.3
  • 12
    • 33751560009 scopus 로고
    • Regularization in the selection of radial basis function centers
    • M. J. L. Orr, "Regularization in the selection of radial basis function centers," Neural Comput., vol. 7, no. 3, pp. 954-975, 1995.
    • (1995) Neural Comput. , vol.7 , Issue.3 , pp. 954-975
    • Orr, M.J.L.1
  • 13
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • H. Akaike, "A new look at the statistical model identification," IEEE Trans. Automat. Contr., vol. AC-19, pp. 716-723, 1974.
    • (1974) IEEE Trans. Automat. Contr. , vol.AC-19 , pp. 716-723
    • Akaike, H.1
  • 15
    • 0035271447 scopus 로고    scopus 로고
    • Nonlinear model structure detection using optimum experimental design and orthogonal least squares
    • Mar.
    • X. Hong and C. J. Harris, "Nonlinear model structure detection using optimum experimental design and orthogonal least squares," IEEE Trans. Neural Networks, vol. 12, pp. 435-439, Mar. 2001.
    • (2001) IEEE Trans. Neural Networks , vol.12 , pp. 435-439
    • Hong, X.1    Harris, C.J.2
  • 16
    • 0036738761 scopus 로고    scopus 로고
    • Nonlinear model structure design and construction using orthogonal least squares and d-optimality design
    • Sept.
    • _, "Nonlinear model structure design and construction using orthogonal least squares and d-optimality design," IEEE Trans. Neural Networks, vol. 13, pp. 1245-1250, Sept. 2001.
    • (2001) IEEE Trans. Neural Networks , vol.13 , pp. 1245-1250
  • 17
    • 6344279265 scopus 로고    scopus 로고
    • Local regularization assisted orthogonal least squares regression
    • submitted for publication
    • S. Chen, "Local regularization assisted orthogonal least squares regression," Int. J. Contr., 2003, submitted for publication.
    • (2003) Int. J. Contr.
    • Chen, S.1
  • 18
    • 0038548172 scopus 로고    scopus 로고
    • Sparse kernel regression modeling using combined locally regularised orthogonal least squares and d-optimality experimental design
    • to be published
    • S. Chen, X. Hong, and C. J. Harris, "Sparse kernel regression modeling using combined locally regularised orthogonal least squares and d-optimality experimental design," IEEE Trans. Automat. Contr., 2003, to be published.
    • (2003) IEEE Trans. Automat. Contr.
    • Chen, S.1    Hong, X.2    Harris, C.J.3
  • 19
    • 0035415965 scopus 로고    scopus 로고
    • Model construction, rule reduction and rubust compensation for generalized form of Takagi-Sugeno fuzzy systems
    • Dec.
    • T. Taniguchi, K. Tanaka, H. Ohtake, and H. O. Wang, "Model construction, rule reduction and rubust compensation for generalized form of Takagi-Sugeno fuzzy systems," IEEE Trans. Fuzzy Syst., vol. 9, pp. 525-538, Dec. 2001.
    • (2001) IEEE Trans. Fuzzy Syst. , vol.9 , pp. 525-538
    • Taniguchi, T.1    Tanaka, K.2    Ohtake, H.3    Wang, H.O.4
  • 20
    • 0033704546 scopus 로고    scopus 로고
    • Fuzzy modeling of high dimensional systems: Complexity reduction and interpretability improvement
    • June
    • Y. Jin, "Fuzzy modeling of high dimensional systems: complexity reduction and interpretability improvement," IEEE Trans. Fuzzy Syst., vol. 8, pp. 212-221, June 2000.
    • (2000) IEEE Trans. Fuzzy Syst. , vol.8 , pp. 212-221
    • Jin, Y.1
  • 21
    • 0035415950 scopus 로고    scopus 로고
    • Compact and transparent fuzzy models and classifiers through iterative complexity reduction
    • Dec.
    • H. Roubos and M. Setnes, "Compact and transparent fuzzy models and classifiers through iterative complexity reduction," IEEE Trans. Fuzzy Syst., vol. 9, pp. 516-524, Dec. 2001.
    • (2001) IEEE Trans. Fuzzy Syst. , vol.9 , pp. 516-524
    • Roubos, H.1    Setnes, M.2
  • 22
    • 0041376987 scopus 로고    scopus 로고
    • A neurofuzzy network knowledge extraction and extended Gram-Schmidt algorithm for model subspace decomposition
    • to be published
    • X. Hong and C. J. Harris, "A neurofuzzy network knowledge extraction and extended Gram-Schmidt algorithm for model subspace decomposition," IEEE Trans. Fuzzy Syst., to be published.
    • IEEE Trans. Fuzzy Syst.
    • Hong, X.1    Harris, C.J.2
  • 24
    • 84949776468 scopus 로고    scopus 로고
    • Network performance assessment for neurofuzzy data modeling
    • S. R. Gunn, M. Brown, and K. Bossley, "Network performance assessment for neurofuzzy data modeling," Intell. Data Anal., pp. 313-323, 1997.
    • (1997) Intell. Data Anal. , pp. 313-323
    • Gunn, S.R.1    Brown, M.2    Bossley, K.3
  • 27
    • 84944477553 scopus 로고
    • Generalized inverse, ridge regression, biased linear estimation and nonlinear estimation
    • D. W. Marquardt, "Generalized inverse, ridge regression, biased linear estimation and nonlinear estimation," Technometrics, vol. 12, no. 3, pp. 591-612, 1970.
    • (1970) Technometrics , vol.12 , Issue.3 , pp. 591-612
    • Marquardt, D.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.