-
1
-
-
0346209973
-
Estimating the infinitesimal generator of a continuous time finite state Markov process
-
ALBERT, A. (1962). Estimating the infinitesimal generator of a continuous time finite state Markov process. Ann. Math. Statist. 38, 727-753.
-
(1962)
Ann. Math. Statist.
, vol.38
, pp. 727-753
-
-
Albert, A.1
-
2
-
-
0009904006
-
Some informational properties of Markov pure-jump processes
-
BAD DUMITRESCU, M. (1988). Some informational properties of Markov pure-jump processes. Cos. Pestovani Mat. 113, 429-434.
-
(1988)
Cos. Pestovani Mat.
, vol.113
, pp. 429-434
-
-
Bad Dumitrescu, M.1
-
3
-
-
0001531440
-
The individual ergodic theorem of information theory
-
BREIMAN, L. (1958). The individual ergodic theorem of information theory. Ann. Math. Statist. 28, 809-811.
-
(1958)
Ann. Math. Statist.
, vol.28
, pp. 809-811
-
-
Breiman, L.1
-
4
-
-
0001531440
-
Correction to: The individual ergodic theorem of information theory
-
BREIMAN, L. (1960). Correction to: the individual ergodic theorem of information theory. Ann. Math. Statist. 31, 809-810.
-
(1960)
Ann. Math. Statist.
, vol.31
, pp. 809-810
-
-
Breiman, L.1
-
7
-
-
0001413858
-
The basic theorems of information theory
-
MCMILLAN, M. (1953). The basic theorems of information theory. Ann. Math. Statist. 24, 196-219.
-
(1953)
Ann. Math. Statist.
, vol.24
, pp. 196-219
-
-
McMillan, M.1
-
8
-
-
0442331491
-
Estimation of the transition distributions of a Markov renewal process
-
MOORE, E. H. AND PYKE, R. (1968). Estimation of the transition distributions of a Markov renewal process. Ann. Inst. Statist. Math. 20, 411-424.
-
(1968)
Ann. Inst. Statist. Math.
, vol.20
, pp. 411-424
-
-
Moore, E.H.1
Pyke, R.2
-
9
-
-
0442300330
-
Extensions of Shannon-McMillan's limit theorem to more general stochastic processes
-
Publishing House of the Czechoslovak Academy of Science, Prague
-
PEREZ, A. (1964). Extensions of Shannon-McMillan's limit theorem to more general stochastic processes. In Trans. Third Prague Conf. Inf. Theory, Statist. Decision Functions, Random Processes, Publishing House of the Czechoslovak Academy of Science, Prague, pp. 545-574.
-
(1964)
Trans. Third Prague Conf. Inf. Theory, Statist. Decision Functions, Random Processes
, pp. 545-574
-
-
Perez, A.1
-
11
-
-
84856043672
-
A mathematical theory of communication
-
SHANNON, C. E. (1948). A mathematical theory of communication. Bell Syst. Tech. J. 27, 379-423, 623-656.
-
(1948)
Bell Syst. Tech. J.
, vol.27
, pp. 379-423
-
-
Shannon, C.E.1
|