-
1
-
-
0001270999
-
-
Wheatley J, Hsu T and Anderson P W 1988 Phys. Rev. B 37, 5897 Wheatley J, Hsu T and Anderson P W 1988 Nature 333 121 Anderson P W 1991 Physica C 185-189 11 Anderson P W 1991 Phys. Rev. Lett. 67 660 Anderson P W 1992 Science 256 1526 Chakravarty S, Sudbø A, Anderson P W and Strong S 1993 Science 261 337 Anderson P W 1995 Science 268 1154
-
(1988)
Phys. Rev. B
, vol.37
, pp. 5897
-
-
Wheatley, J.1
Hsu, T.2
Anderson, P.W.3
-
2
-
-
30244492619
-
-
Wheatley J, Hsu T and Anderson P W 1988 Phys. Rev. B 37, 5897 Wheatley J, Hsu T and Anderson P W 1988 Nature 333 121 Anderson P W 1991 Physica C 185-189 11 Anderson P W 1991 Phys. Rev. Lett. 67 660 Anderson P W 1992 Science 256 1526 Chakravarty S, Sudbø A, Anderson P W and Strong S 1993 Science 261 337 Anderson P W 1995 Science 268 1154
-
(1988)
Nature
, vol.333
, pp. 121
-
-
Wheatley, J.1
Hsu, T.2
Anderson, P.W.3
-
3
-
-
0005285732
-
-
Wheatley J, Hsu T and Anderson P W 1988 Phys. Rev. B 37, 5897 Wheatley J, Hsu T and Anderson P W 1988 Nature 333 121 Anderson P W 1991 Physica C 185-189 11 Anderson P W 1991 Phys. Rev. Lett. 67 660 Anderson P W 1992 Science 256 1526 Chakravarty S, Sudbø A, Anderson P W and Strong S 1993 Science 261 337 Anderson P W 1995 Science 268 1154
-
(1991)
Physica C
, vol.185-189
, pp. 11
-
-
Anderson, P.W.1
-
4
-
-
7144267614
-
-
Wheatley J, Hsu T and Anderson P W 1988 Phys. Rev. B 37, 5897 Wheatley J, Hsu T and Anderson P W 1988 Nature 333 121 Anderson P W 1991 Physica C 185-189 11 Anderson P W 1991 Phys. Rev. Lett. 67 660 Anderson P W 1992 Science 256 1526 Chakravarty S, Sudbø A, Anderson P W and Strong S 1993 Science 261 337 Anderson P W 1995 Science 268 1154
-
(1991)
Phys. Rev. Lett.
, vol.67
, pp. 660
-
-
Anderson, P.W.1
-
5
-
-
0026880192
-
-
Wheatley J, Hsu T and Anderson P W 1988 Phys. Rev. B 37, 5897 Wheatley J, Hsu T and Anderson P W 1988 Nature 333 121 Anderson P W 1991 Physica C 185-189 11 Anderson P W 1991 Phys. Rev. Lett. 67 660 Anderson P W 1992 Science 256 1526 Chakravarty S, Sudbø A, Anderson P W and Strong S 1993 Science 261 337 Anderson P W 1995 Science 268 1154
-
(1992)
Science
, vol.256
, pp. 1526
-
-
Anderson, P.W.1
-
6
-
-
0027625808
-
-
Wheatley J, Hsu T and Anderson P W 1988 Phys. Rev. B 37, 5897 Wheatley J, Hsu T and Anderson P W 1988 Nature 333 121 Anderson P W 1991 Physica C 185-189 11 Anderson P W 1991 Phys. Rev. Lett. 67 660 Anderson P W 1992 Science 256 1526 Chakravarty S, Sudbø A, Anderson P W and Strong S 1993 Science 261 337 Anderson P W 1995 Science 268 1154
-
(1993)
Science
, vol.261
, pp. 337
-
-
Chakravarty, S.1
Sudbø, A.2
Anderson, P.W.3
Strong, S.4
-
7
-
-
0029305305
-
-
Wheatley J, Hsu T and Anderson P W 1988 Phys. Rev. B 37, 5897 Wheatley J, Hsu T and Anderson P W 1988 Nature 333 121 Anderson P W 1991 Physica C 185-189 11 Anderson P W 1991 Phys. Rev. Lett. 67 660 Anderson P W 1992 Science 256 1526 Chakravarty S, Sudbø A, Anderson P W and Strong S 1993 Science 261 337 Anderson P W 1995 Science 268 1154
-
(1995)
Science
, vol.268
, pp. 1154
-
-
Anderson, P.W.1
-
8
-
-
0003472676
-
-
Princeton, NJ: Princeton University Press
-
c Cuprates (Princeton, NJ: Princeton University Press)
-
(1997)
c Cuprates
-
-
Anderson, P.W.1
-
10
-
-
0029802354
-
-
Leggett A J 1996 Science 274 587 Leggett A J 1998 Science 279 1157
-
(1996)
Science
, vol.274
, pp. 587
-
-
Leggett, A.J.1
-
11
-
-
0032549131
-
-
Leggett A J 1996 Science 274 587 Leggett A J 1998 Science 279 1157
-
(1998)
Science
, vol.279
, pp. 1157
-
-
Leggett, A.J.1
-
12
-
-
0032549105
-
-
Moler K A, Kirtley J R, Hinks D G, Li T W and Xu M 1998 Science 279 1193
-
(1998)
Science
, vol.279
, pp. 1193
-
-
Moler, K.A.1
Kirtley, J.R.2
Hinks, D.G.3
Li, T.W.4
Xu, M.5
-
14
-
-
0024888090
-
-
Clem J R 1975 J. Low Temp. Phys. 18 427 Clem J R 1989 Physica C 162-164 1137
-
(1989)
Physica C
, vol.162-164
, pp. 1137
-
-
Clem, J.R.1
-
19
-
-
11544275220
-
-
note
-
0″/π.
-
-
-
-
20
-
-
11544339940
-
-
note
-
∝] we have employed C05NBF and C05NCF, both of which are based on the Powell hybrid method.
-
-
-
-
21
-
-
11544282020
-
-
note
-
2 are everywhere, with the exception of ρ = 0, regular, all solutions of equation (4), irrespective of the BCs or the FQC, are infinitely many times differentiabte over (0, ∞). This follows from the fact that any function satisfying equation (4) must possess a continuous first derivative with respect to ρ (see text). Differentiating both sides of equation (4) (which is an allowed operation in view of φ(ρ) being defined on an open interval), one observes that also the second derivative with respect to ρ of φ(ρ) has to be continuous. Proceeding along this line for an arbitrary number of times, our statement is proved. An important corollary to the above statement is that no non-trivial solution of equation (4) can have a finite support.
-
-
-
|