-
1
-
-
4344610534
-
-
H. Ohno, H. Munekata, T. Penny, S. von Molnar, and L. L. Chang, Phys. Rev. Lett. 68, 2664 (1992).
-
(1992)
Phys. Rev. Lett.
, vol.68
, pp. 2664
-
-
Ohno, H.1
Munekata, H.2
Penny, T.3
von Molnar, S.4
Chang, L.L.5
-
2
-
-
0009501328
-
-
H. Ohno, A. Shen, F. Matsukara, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, Appl. Phys. Lett. 69, 363 (1996).
-
(1996)
Appl. Phys. Lett.
, vol.69
, pp. 363
-
-
Ohno, H.1
Shen, A.2
Matsukara, F.3
Oiwa, A.4
Endo, A.5
Katsumoto, S.6
Iye, Y.7
-
3
-
-
0000497954
-
-
F. Matsukara, H. Ohno, A. Shen, and Y. Sugawara, Phys. Rev. B 57, R2037 (1998).
-
(1998)
Phys. Rev. B
, vol.57
, pp. R2037
-
-
Matsukara, F.1
Ohno, H.2
Shen, A.3
Sugawara, Y.4
-
9
-
-
0000258141
-
-
T. Jungworth, W. A. Atkinson, B. H. Lee, and A. H. MacDonald, Phys. Rev. B 59, 9818 (1999);
-
(1999)
Phys. Rev. B
, vol.59
, pp. 9818
-
-
Jungworth, T.1
Atkinson, W.A.2
Lee, B.H.3
MacDonald, A.H.4
-
11
-
-
0034635396
-
-
T. Dietl, H. Ohno, F. Matsukara, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).
-
(2000)
Science
, vol.287
, pp. 1019
-
-
Dietl, T.1
Ohno, H.2
Matsukara, F.3
Cibert, J.4
Ferrand, D.5
-
14
-
-
3543117190
-
-
T. Jungworth, J. König, J. Sinova, K. Kučera, and A. H. MacDonald, Phys. Rev. B 66, 012402 (2002).
-
(2002)
Phys. Rev. B
, vol.66
, pp. 012402
-
-
Jungworth, T.1
König, J.2
Sinova, J.3
Kučera, K.4
MacDonald, A.H.5
-
15
-
-
0000587741
-
-
H. Ohno, N. Akiba, F. Matsukara, A. Shen, K. Ohtani, and Y. Ohno, Appl. Phys. Lett. 73, 363 (1998).
-
(1998)
Appl. Phys. Lett.
, vol.73
, pp. 363
-
-
Ohno, H.1
Akiba, N.2
Matsukara, F.3
Shen, A.4
Ohtani, K.5
Ohno, Y.6
-
29
-
-
85039017501
-
-
cond-mat/0209055 (unpublished)
-
C. Timm F. von Oppen cond-mat/0209055 (unpublished).
-
-
-
Timm, C.1
von Oppen, F.2
-
39
-
-
0037266769
-
-
V. A. Ivanov, P. M. Krstajić, F. M. Peeters, V. Fleurov, and K. Kikoin, Europhys. Lett. 61, 235 (2003).
-
(2003)
Europhys. Lett.
, vol.61
, pp. 235
-
-
Ivanov, V.A.1
Krstajić, P.M.2
Peeters, F.M.3
Fleurov, V.4
Kikoin, K.5
-
46
-
-
0000008466
-
-
For a stability analysis of the hole and electron doped antiferromagnetic state
-
For a stability analysis of the hole and electron doped antiferromagnetic state, see A. Singh and Z. Tešanović, Phys. Rev. B 41, 614 (1990);
-
(1990)
Phys. Rev. B
, vol.41
, pp. 614
-
-
Singh, A.1
Tešanović, Z.2
-
48
-
-
3342887504
-
-
In contrast, the AF state of the Hubbard model (with nearest neighor hopping) is unstable to longitudinal fluctuations upon hole doping, leading to formation of spin bags, and stripes
-
In contrast, the AF state of the Hubbard model (with nearest neighor hopping) is unstable to longitudinal fluctuations upon hole doping, leading to formation of spin bags [J. R. Schrieffer, X.-G. Wen, and S.-C. Zhang, Phys. Rev. Lett. 60, 944 (1988)] and stripes
-
(1988)
Phys. Rev. Lett.
, vol.60
, pp. 944
-
-
Schrieffer, J.R.1
Wen, X.-G.2
Zhang, S.-C.3
-
49
-
-
0001662278
-
-
It is the degeneracy at the nested Fermi surface which significantly enhances the susceptibility to longitudinal fluctuations, as evidenced by the stabilization of the homogeneous antiferromagnetic state when this degeneracy is lifted, e.g., by a small next-nearest-neighbour hopping term (Ref. 40)
-
[D. Poilblanc and T. M. Rice, Phys. Rev. B 39, 9749 (1989).] It is the degeneracy at the nested Fermi surface which significantly enhances the susceptibility to longitudinal fluctuations, as evidenced by the stabilization of the homogeneous antiferromagnetic state when this degeneracy is lifted, e.g., by a small next-nearest-neighbour hopping term (Ref. 40).
-
(1989)
Phys. Rev. B
, vol.39
, pp. 9749
-
-
Poilblanc, D.1
Rice, T.M.2
-
50
-
-
85038981887
-
-
cond-mat/0307009 (unpublished)
-
A. Singh, cond-mat/0307009 (unpublished).
-
-
-
Singh, A.1
-
51
-
-
85038987033
-
-
cond-mat/9802047 (unpublished)
-
A. Singh, cond-mat/9802047 (unpublished);
-
-
-
Singh, A.1
-
52
-
-
0041851136
-
-
references therein
-
A. Singh Eur. Phys. J. B 11, 5 (1999), and references therein.
-
(1999)
Eur. Phys. J. B
, vol.11
, pp. 5
-
-
Singh, A.1
|