-
1
-
-
0015482478
-
Discrete convolution via Mersenne transforms
-
C.M. Rader, Discrete convolution via Mersenne transforms, IEEE Trans. Comp. C-21 (1972) 1269-1273.
-
(1972)
IEEE Trans. Comp.
, vol.C-21
, pp. 1269-1273
-
-
Rader, C.M.1
-
2
-
-
0015965118
-
Fast convolution using Fermat number transform with applications to digital filtering
-
R.C. Agarwal, C.S. Burrus, Fast convolution using Fermat number transform with applications to digital filtering, IEEE Trans. Acoust. Speech Signal Process ASSP-22 (1974) 87-97.
-
(1974)
IEEE Trans. Acoust. Speech Signal Process
, vol.ASSP-22
, pp. 87-97
-
-
Agarwal, R.C.1
Burrus, C.S.2
-
3
-
-
0017623946
-
Digital filtering using pseudo-Fermat number transform
-
H.J. Nussbaumer, Digital filtering using pseudo-Fermat number transform, IEEE Trans. Acoust. Speech Signal Process ASSP-25 (1977) 79-83.
-
(1977)
IEEE Trans. Acoust. Speech Signal Process
, vol.ASSP-25
, pp. 79-83
-
-
Nussbaumer, H.J.1
-
4
-
-
0022677017
-
Precise deconvolution using the Fermat number transform
-
M. Morháč, Precise deconvolution using the Fermat number transform, Comp. Math. Appl. 12A (1986) 319-329.
-
(1986)
Comp. Math. Appl.
, vol.12 A
, pp. 319-329
-
-
Morháč, M.1
-
5
-
-
0024924167
-
K-dimensional error-free deconvolution using the Fermat number transform
-
M. Morháč, K-dimensional error-free deconvolution using the Fermat number transform, Comp. Math. Appl. 18 (1989) 1023-1032.
-
(1989)
Comp. Math. Appl.
, vol.18
, pp. 1023-1032
-
-
Morháč, M.1
-
6
-
-
25544470920
-
Precise multidimensional deconvolution using the polynomial algebra concept
-
M. Morháč, Precise multidimensional deconvolution using the polynomial algebra concept, Intern. J. Comput. Math. 32 (1990) 13-26.
-
(1990)
Intern. J. Comput. Math.
, vol.32
, pp. 13-26
-
-
Morháč, M.1
-
7
-
-
0027876067
-
Error-free deconvolution based on cyclic determinant calculation approach
-
M. Morháč, Error-free deconvolution based on cyclic determinant calculation approach, Intern. J. Comput. Math. 49 (1993) 1-51.
-
(1993)
Intern. J. Comput. Math.
, vol.49
, pp. 1-51
-
-
Morháč, M.1
-
9
-
-
0008783593
-
An error-free Levison algorithm to solve integer Toeplitz system
-
M. Morháč, An error-free Levison algorithm to solve integer Toeplitz system, Appl. Math. Comput. 61 (1994) 135-149.
-
(1994)
Appl. Math. Comput.
, vol.61
, pp. 135-149
-
-
Morháč, M.1
-
10
-
-
0345903732
-
An algorithm to solve Hilbert systems of linear equations precisely
-
M. Morháč, An algorithm to solve Hilbert systems of linear equations precisely, Appl. Math. Comput. 73 (1995) 209-229.
-
(1995)
Appl. Math. Comput.
, vol.73
, pp. 209-229
-
-
Morháč, M.1
-
11
-
-
0004161838
-
-
Cambridge University Press, Cambridge
-
W.H. Press et al., Numerical Recipes, Cambridge University Press, Cambridge, 1986.
-
(1986)
Numerical Recipes
-
-
Press, W.H.1
-
12
-
-
25544450868
-
A modular system for solving linear equations exactly. I, Architecture and numerical algorithms
-
M. Morháč, R. Lórencz, A modular system for solving linear equations exactly. I, Architecture and numerical algorithms, Comput. Artificial Intelligence 11 (1992) 351-361.
-
(1992)
Comput. Artificial Intelligence
, vol.11
, pp. 351-361
-
-
Morháč, M.1
Lórencz, R.2
-
13
-
-
21144479105
-
A modular system for solving linear equations exactly, II. Hardware realization
-
R. Lórencz, M. Morháč, A modular system for solving linear equations exactly, II. Hardware realization. Comput. Artificial Intelligence 11 (1992) 497-507.
-
(1992)
Comput. Artificial Intelligence
, vol.11
, pp. 497-507
-
-
Lórencz, R.1
Morháč, M.2
-
14
-
-
0345903734
-
-
National Bureau of Standards
-
M. Newman, Solving equations exactly, National Bureau of Standards 71B (1967) 171-179.
-
(1967)
Solving Equations Exactly
, vol.71 B
, pp. 171-179
-
-
Newman, M.1
|