메뉴 건너뛰기




Volumn 11, Issue 4, 2003, Pages 377-405

A framework for epidemic models

Author keywords

Epidemics; Final size distribution; Inhibitor function; Stochastic; Time dependent

Indexed keywords

GOES;

EID: 0348197192     PISSN: 02183390     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0218339003000919     Document Type: Article
Times cited : (4)

References (16)
  • 1
    • 0001242066 scopus 로고
    • An examination of the Reed-Frost theory of epidemics
    • Abbey H., An examination of the Reed-Frost theory of epidemics, Human Biology 24 (1952) pp. 201-233.
    • (1952) Human Biology , vol.24 , pp. 201-233
    • Abbey, H.1
  • 2
    • 0012022109 scopus 로고
    • A simple stochastic epidemic
    • Bailey N. T. J., A simple stochastic epidemic, Biometrica 37 (1950) pp. 139-202.
    • (1950) Biometrica , vol.37 , pp. 139-202
    • Bailey, N.T.J.1
  • 3
    • 0000814780 scopus 로고
    • The total size of a general stochastic epidemic
    • Bailey N. T. J., The total size of a general stochastic epidemic, Biometrica 40 (1953) pp. 177-185.
    • (1953) Biometrica , vol.40 , pp. 177-185
    • Bailey, N.T.J.1
  • 5
    • 21844496367 scopus 로고
    • The final outcome of an epidemic model with several different types of infective in a large population
    • Ball F. and Clancy D., The final outcome of an epidemic model with several different types of infective in a large population, J. Appl. Prob. 32 (1995) pp. 579-590.
    • (1995) J. Appl. Prob. , vol.32 , pp. 579-590
    • Ball, F.1    Clancy, D.2
  • 8
    • 0346652814 scopus 로고    scopus 로고
    • Epidemics between Bailey and Reed-Frost: A stochastic version of the Kermack and McKendrick model
    • Gielen J. L. W., Epidemics between Bailey and Reed-Frost: A stochastic version of the Kermack and McKendrick model, J. Biol. Syst. 5 (1997) pp. 489-508.
    • (1997) J. Biol. Syst. , vol.5 , pp. 489-508
    • Gielen, J.L.W.1
  • 9
    • 0346929323 scopus 로고    scopus 로고
    • A stochastic model for epidemics based on the renewal equation
    • Gielen J. L. W., A stochastic model for epidemics based on the renewal equation, J. Biol. Syst. 8 (2000) pp. 1-20.
    • (2000) J. Biol. Syst. , vol.8 , pp. 1-20
    • Gielen, J.L.W.1
  • 10
    • 0000998185 scopus 로고
    • A contribution to the mathematical theory of epidemics
    • Kermack W. O. and McKendrick, A. G., A contribution to the mathematical theory of epidemics, Proc. Royal Soc. London A115 (1927) pp. 700-721.
    • (1927) Proc. Royal Soc. London , vol.A115 , pp. 700-721
    • Kermack, W.O.1    McKendrick, A.G.2
  • 12
    • 0016636706 scopus 로고
    • Final Size distributions for epidemics
    • Ludwig D., Final Size distributions for epidemics, Math. Biosci. 23 (1975) pp. 33-46.
    • (1975) Math. Biosci. , vol.23 , pp. 33-46
    • Ludwig, D.1
  • 13
    • 0016612225 scopus 로고
    • Qualitative behavior of stochastic epidemics
    • Ludwig D., Qualitative behavior of stochastic epidemics, Math. Biosci. 23 (1975) pp. 47-73.
    • (1975) Math. Biosci. , vol.23 , pp. 47-73
    • Ludwig, D.1
  • 14
    • 84860215339 scopus 로고
    • Applications of mathematics to medical problems
    • McKendrick A. G., Applications of mathematics to medical problems, Proc. Edin. Math. Soc. 44 (1926) pp. 98-130.
    • (1926) Proc. Edin. Math. Soc. , vol.44 , pp. 98-130
    • McKendrick, A.G.1
  • 15
    • 0018242499 scopus 로고
    • The epidemic in a closed population with all susceptibles equally vulnerable. Some results for large populations and small initial infections
    • Metz J. A. J., The epidemic in a closed population with all susceptibles equally vulnerable. Some results for large populations and small initial infections, Acta Biotheoretica 27 (1978) pp. 75-123.
    • (1978) Acta Biotheoretica , vol.27 , pp. 75-123
    • Metz, J.A.J.1
  • 16
    • 0344713455 scopus 로고
    • Asymptotic final size distribution of the multitype Reed-Frost process
    • Scalia-Tomba G., Asymptotic final size distribution of the multitype Reed-Frost process, J. Appl. Prob. 23 (1986) pp. 563-584.
    • (1986) J. Appl. Prob. , vol.23 , pp. 563-584
    • Scalia-Tomba, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.