-
1
-
-
0002587835
-
Weak convergence of moving averages with infinite variance
-
Eberlein, E., Taqqu, M.S. (Eds.), Birkäuser, Boston
-
Avram, F., Taqqu, M.S., 1986. Weak convergence of moving averages with infinite variance. In: Eberlein, E., Taqqu, M.S. (Eds.), Dependence in Probability and Statistics. Birkäuser, Boston, pp. 399-415.
-
(1986)
Dependence in Probability and Statistics
, pp. 399-415
-
-
Avram, F.1
Taqqu, M.S.2
-
3
-
-
0003571205
-
-
Cambridge University Press, Cambridge
-
Bingham, N.H., Goldie, C.M., Teugels, J.L., 1987. Regular Variation. Cambridge University Press, Cambridge.
-
(1987)
Regular Variation
-
-
Bingham, N.H.1
Goldie, C.M.2
Teugels, J.L.3
-
4
-
-
0000448413
-
The invariance principle for stationary processes
-
Davydov, Y.A., 1970. The invariance principle for stationary processes. Theory Probab. Appl. 15, 487-498.
-
(1970)
Theory Probab. Appl.
, vol.15
, pp. 487-498
-
-
Davydov, Y.A.1
-
5
-
-
0347460742
-
Functional limit theorems for weighted sums of i.i.d. random variables
-
Kasahara, Y., Maejima, M., 1986. Functional limit theorems for weighted sums of i.i.d. random variables. Probab. Theory Related Fields 72, 161-183.
-
(1986)
Probab. Theory Related Fields
, vol.72
, pp. 161-183
-
-
Kasahara, Y.1
Maejima, M.2
-
6
-
-
0041571279
-
Weighted sums of i.i.d. random variables attracted to integrals of stable processes
-
Kasahara, Y., Maejima, M., 1988. Weighted sums of i.i.d. random variables attracted to integrals of stable processes. Probab. Theory Related Fields 78, 75-96.
-
(1988)
Probab. Theory Related Fields
, vol.78
, pp. 75-96
-
-
Kasahara, Y.1
Maejima, M.2
-
8
-
-
0347467583
-
Convergence of the Weierstrass-Mandelbrot process to fractional Brownian motion
-
to appear
-
Pipiras, V., Taqqu, M.S., 2000a. Convergence of the Weierstrass-Mandelbrot process to fractional Brownian motion. Fractals, to appear.
-
(2000)
Fractals
-
-
Pipiras, V.1
Taqqu, M.S.2
-
9
-
-
0034562433
-
Integration questions related to fractional Brownian motion
-
Preprint 1999. to appear
-
Pipiras, V., Taqqu, M.S., 2000b. Integration questions related to fractional Brownian motion. Preprint 1999. Probability Theory and Related Fields, to appear.
-
(2000)
Probability Theory and Related Fields
-
-
Pipiras, V.1
Taqqu, M.S.2
-
10
-
-
85037470970
-
The Weierstrass-Mandelbrot process provides a series approximation to the harmonizable fractional stable motion
-
Bandt, C., Graf, S., Zähle, M. (Eds.), Birkhäuser, Basel
-
Pipiras, V., Taqqu, M.S., 2000c. The Weierstrass-Mandelbrot process provides a series approximation to the harmonizable fractional stable motion. In: Bandt, C., Graf, S., Zähle, M. (Eds.), Fractal Geometry and Stochastics II. Birkhäuser, Basel, pp. 161-179.
-
(2000)
Fractal Geometry and Stochastics II
, pp. 161-179
-
-
Pipiras, V.1
Taqqu, M.S.2
-
11
-
-
0003598080
-
-
Gordon and Breach Science Publishers, London
-
Samko, S.G., Kilbas, A.A., Marichev, O.I., 1993. Fractional Integrals and Derivatives. Gordon and Breach Science Publishers, London.
-
(1993)
Fractional Integrals and Derivatives
-
-
Samko, S.G.1
Kilbas, A.A.2
Marichev, O.I.3
-
13
-
-
34250409798
-
Weak convergence to fractional Brownian motion and to the Rosenblatt process
-
Taqqu, M.S., 1975. Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrsch. Verwandte Gebiete 31, 287-302.
-
(1975)
Z. Wahrsch. Verwandte Gebiete
, vol.31
, pp. 287-302
-
-
Taqqu, M.S.1
-
14
-
-
84953751498
-
-
Cambridge University Press, Cambridge
-
Zygmund, A., 1979. Trigonometric Series, Vols. I, II. Cambridge University Press, Cambridge.
-
(1979)
Trigonometric Series
, vol.1-2
-
-
Zygmund, A.1
|