-
4
-
-
0021628110
-
On the average length of Delaunay triangulations
-
Chang R.C., Lee R.C.T. On the average length of Delaunay triangulations. BIT. 24:1984;269-273.
-
(1984)
BIT
, vol.24
, pp. 269-273
-
-
Chang, R.C.1
Lee, R.C.T.2
-
5
-
-
85032225490
-
Which triangulations approximate the complete graph?
-
Springer, Berlin
-
G. Das, D. Joseph, Which triangulations approximate the complete graph? Optimal Algorithms, Lecture Notes in Computer Science, Springer, Berlin, Vol. 401 (1989) 168-192.
-
(1989)
Optimal Algorithms, Lecture Notes in Computer Science
, vol.401
, pp. 168-192
-
-
Das, G.1
Joseph, D.2
-
6
-
-
0346195474
-
A simple linear time greedy triangulation algorithm for uniformly distributed points
-
Technishe Universitaet Graz
-
R.L. Drysdale, G. Rote, O. Aichholzer, A simple linear time greedy triangulation algorithm for uniformly distributed points, IIG-Report-Series 408, Technishe Universitaet Graz, 1995.
-
(1995)
IIG-Report-Series
, vol.408
-
-
Drysdale, R.L.1
Rote, G.2
Aichholzer, O.3
-
8
-
-
84922418531
-
New algorithms and empirical findings on minimum weight triangulation heuristics
-
M. Dickerson, S. McElfresh, M. Montague, New algorithms and empirical findings on minimum weight triangulation heuristics, Proceedings of the 11th Annual ACM Symposium on Computational Geometry, 1995, pp. 238-247.
-
(1995)
Proceedings of the 11th Annual ACM Symposium on Computational Geometry
, pp. 238-247
-
-
Dickerson, M.1
McElfresh, S.2
Montague, M.3
-
10
-
-
0003415254
-
-
M.S. Thesis, University of Illinois, Urbana, IL
-
P. Gilbert, New results in planar triangulations, M.S. Thesis, University of Illinois, Urbana, IL, 1979.
-
(1979)
New Results in Planar Triangulations
-
-
Gilbert, P.1
-
12
-
-
0028713169
-
New results for the minimum weight triangulation problem
-
Heath L., Pemmaraju S. New results for the minimum weight triangulation problem. Algorithmica. 1994;533-552.
-
(1994)
Algorithmica
, pp. 533-552
-
-
Heath, L.1
Pemmaraju, S.2
-
13
-
-
0003136657
-
Computing a subgraph of the minimum weight triangulation
-
Keil M. Computing a subgraph of the minimum weight triangulation. Comput. Geom.: Theory Appl. 4:1994;13-26.
-
(1994)
Comput. Geom.: Theory Appl.
, vol.4
, pp. 13-26
-
-
Keil, M.1
-
14
-
-
0000775283
-
Minimal triangulations of polygonal domains
-
G. Klincsek, Minimal triangulations of polygonal domains, Ann. Discrete Math. 9, 121-123.
-
Ann. Discrete Math.
, vol.9
, pp. 121-123
-
-
Klincsek, G.1
-
15
-
-
0023367455
-
An Ω (n) lower bound for the nonoptimality of the greedy triangulation
-
Levcopoulos C. An. Ω (n) lower bound for the nonoptimality of the greedy triangulation Inform. Process. Lett. 25:1987;247-251.
-
(1987)
Inform. Process. Lett.
, vol.25
, pp. 247-251
-
-
Levcopoulos, C.1
-
16
-
-
0006936254
-
Quasi-greedy triangulations approximating the minimum weight triangulation
-
Levcopoulos C., Krznaric D. Quasi-greedy triangulations approximating the minimum weight triangulation. J. Algorithms. 27:1998;303-338.
-
(1998)
J. Algorithms
, vol.27
, pp. 303-338
-
-
Levcopoulos, C.1
Krznaric, D.2
-
17
-
-
0346410510
-
Greedy triangulation approximates the minimum weight triangulation and can be computed in linear time in the average case
-
Department of Computer Science, Lund University
-
C. Levcopoulos, A. Lingas, Greedy triangulation approximates the minimum weight triangulation and can be computed in linear time in the average case, Technical Report LU-CS-TR:92-105, Department of Computer Science, Lund University, 1992.
-
(1992)
Technical Report LU-CS-TR:92-105
-
-
Levcopoulos, C.1
Lingas, A.2
-
18
-
-
0001773747
-
Neither the greedy nor the Delaunay triangulation of the planar set approximates the optimal triangulation
-
Manacher G., Zobrist A. Neither the greedy nor the Delaunay triangulation of the planar set approximates the optimal triangulation. Inform. Process. Lett. 9:1979;31-34.
-
(1979)
Inform. Process. Lett.
, vol.9
, pp. 31-34
-
-
Manacher, G.1
Zobrist, A.2
|