메뉴 건너뛰기




Volumn 6, Issue 9, 1997, Pages 641-655

A complete classification of closed shapes for cylindrical vesicles

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0347858783     PISSN: 1004423X     EISSN: None     Source Type: Journal    
DOI: 10.1088/1004-423X/6/9/001     Document Type: Article
Times cited : (24)

References (18)
  • 1
    • 33745991915 scopus 로고    scopus 로고
    • J, N. Surface (Academic New York, 1991)
    • J, N. Surface (Academic New York, 1991).
  • 5
    • 0024324636 scopus 로고    scopus 로고
    • S. Svetina and 17 (1989), 101L. Miao, B. M.Rao, M. and R. K. P. Zia, 6843
    • S. Svetina and 17 (1989), 101; L. Miao, B. M.Rao, M. and R. K. P. Zia, 6843
  • 11
    • 0039417377 scopus 로고
    • K. y. Cell Biol, 25 {1965 ), 293.
    • (1965) Cell Biol , vol.25 , pp. 293
  • 15
    • 33745980117 scopus 로고
    • J. (1987),53.
    • The Complete Set of s Surfaces are Noduloids, Caienoids,- Circular Cylinders and see C.Delaanay, J. . Pures et. l(6)( 1841 ), 309 J. (1987),53.
    • (1841) J. . Pures Et , vol.50 , Issue.6 , pp. 309
  • 16
    • 33746029029 scopus 로고    scopus 로고
    • The Periodic Contour are Those Shapes Periodically with the Coordinates, so the are Not Periodic in Euclidean Space. Only when the is Not Subject to a Volume Constraint, i, e., Δp = 0, are the Contours in Periodic, as Has Pointed out in Ref. [10]
    • The Periodic Contour are Those Shapes Periodically with the Coordinates, so the are Not Periodic in Euclidean Space. Only when the is Not Subject to a Volume Constraint, i, e., Δp = 0, are the Contours in Periodic, as Has Pointed out in Ref. [10].
  • 18
    • 0000285519 scopus 로고
    • U. Phys. Rev., A43( 1991), 6803.
    • (1991) Phys. Rev. , vol.A43 , pp. 6803


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.