-
1
-
-
0346530264
-
Controllability and observability functions for model reduction of nonlinear systems
-
Princeton, New Jersey
-
Gray, W.S. and J. P. Mesko (1996). Controllability and observability functions for model reduction of nonlinear systems. Proc. 1996 Conf. Inf. Sc. & Syst., Princeton, New Jersey, pp. 1244-1249.
-
(1996)
Proc. 1996 Conf. Inf. Sc. & Syst.
, pp. 1244-1249
-
-
Gray, W.S.1
Mesko, J.P.2
-
2
-
-
0347790727
-
General input balancing transformations for nonlinear systems
-
Baltimore, Maryland
-
Gray, W.S. and J. P. Mesko (1997). General input balancing transformations for nonlinear systems. Proc. 1997 Conf. Inf. Sc. & Syst, Baltimore, Maryland, pp. 264-269.
-
(1997)
Proc. 1997 Conf. Inf. Sc. & Syst
, pp. 264-269
-
-
Gray, W.S.1
Mesko, J.P.2
-
3
-
-
84949100867
-
General input balancing and model reduction for linear and nonlinear systems
-
Brussels, Belgium
-
Gray, W.S. and J. P. Mesko (1997). General input balancing and model reduction for linear and nonlinear systems. Proc. 1997 Eur. Contr. Conf, Brussels, Belgium.
-
(1997)
Proc. 1997 Eur. Contr. Conf
-
-
Gray, W.S.1
Mesko, J.P.2
-
4
-
-
84881357512
-
Observability functions for linear and nonlinear systems
-
submitted
-
Gray, W.S. and J. P. Mesko (1997). Observability functions for linear and nonlinear systems. Syst. & Contr. Letters, submitted.
-
(1997)
Syst. & Contr. Letters
-
-
Gray, W.S.1
Mesko, J.P.2
-
5
-
-
0017009905
-
The stability of nonlinear dissipative systems
-
Hill, D. and P. Moylan (1976). The stability of nonlinear dissipative systems. IEEE Trans. Aut. Contr. AC-21, pp. 708-711.
-
(1976)
IEEE Trans. Aut. Contr
, vol.AC-21
, pp. 708-711
-
-
Hill, D.1
Moylan, P.2
-
9
-
-
0026883666
-
Z-2-gain analysis of nonlinear systems and nonlinear state feedback woo control
-
van der Schaft, A.J. (1992). Z-2-gain analysis of nonlinear systems and nonlinear state feedback Woo control. IEEE Trans. Aut. Contr. AC-37, pp. 770-784.
-
(1992)
IEEE Trans. Aut. Contr.
, vol.AC-37
, pp. 770-784
-
-
Van Der Schaft, A.J.1
-
10
-
-
0027641967
-
Balancing for nonlinear systems
-
Scherpen, J.M.A. (1993). Balancing for nonlinear systems. Syst. & Contr. Letters 21, pp. 143-153.
-
(1993)
Syst. & Contr. Letters
, vol.21
, pp. 143-153
-
-
Scherpen, J.M.A.1
-
11
-
-
0000348484
-
Balancing for nonlinear systems
-
Groningen, The Netherlands
-
Scherpen, J.M.A. (1993). Balancing for nonlinear systems. Proc. 1993 Eur. Contr. Conf. Groningen, The Netherlands. Vol. 4. pp. 1838-1843.
-
(1993)
Proc. 1993 Eur. Contr. Conf.
, vol.4
, pp. 1838-1843
-
-
Scherpen, J.M.A.1
-
13
-
-
33749961625
-
On the similarity invariance of balancing for nonlinear systems
-
Tahoe City, CA
-
Scherpen, J.M.A. (1995). On the similarity invariance of balancing for nonlinear systems, Preprints IFACNonl. Contr. Syst. Des. (NOLCOS). Tahoe City, CA. Vol. 2. pp. 783-788.
-
(1995)
Preprints IFACNonl. Contr. Syst. Des. (NOLCOS)
, vol.2
, pp. 783-788
-
-
Scherpen, J.M.A.1
-
15
-
-
84881336786
-
Integrability of certain distributions associated to actions on manifolds and an introduction to lie-algebraic control
-
Rutgers Center SYCON Report 88-04, partly appeared H.J. Sussmann, ed.
-
Sontag, E.D. (1990). Integrability of certain distributions associated to actions on manifolds and an introduction to Lie-algebraic control. Rutgers Center SYCON Report 88-04, partly appeared in: Nonlinear Controllability and Optimal Control. H.J. Sussmann, ed. pp. 1-41.
-
(1990)
Nonlinear Controllability and Optimal Control
, pp. 1-41
-
-
Sontag, E.D.1
-
16
-
-
34250386237
-
Existence and uniqueness of minimal realizations of nonlinear systems
-
Sussman, H.J. (1977). Existence and uniqueness of minimal realizations of nonlinear systems. Math. Syst. Theory. 10. pp. 263-284.
-
(1977)
Math. Syst. Theory
, vol.10
, pp. 263-284
-
-
Sussman, H.J.1
-
17
-
-
0023138986
-
A general theorem on local controllability
-
Sussmann, H.J. (1987). A general theorem on local controllability. SIAM J. Contr. Opt. Vol. 25. pp. 158-194.
-
(1987)
SIAM J. Contr. Opt.
, vol.25
, pp. 158-194
-
-
Sussmann, H.J.1
-
18
-
-
0029482521
-
What is the dimension of the minimal realization of a nonlinear system?
-
New Orleans, Louisiana
-
Zheng, Y.F., P. Liu, A.S.I. Zinober and C.H. Moog (1995). What is the dimension of the minimal realization of a nonlinear system? Proc. 34th IEEE CDC. New Orleans, Louisiana. Vol. 4. pp. 4239-4244.
-
(1995)
Proc. 34th IEEE CDC
, vol.4
, pp. 4239-4244
-
-
Zheng, Y.F.1
Liu, P.2
Zinober, A.S.I.3
Moog, C.H.4
|