-
1
-
-
0000743845
-
On biases in estimation due to the use of preliminary tests of significance
-
Bancroft, T.A. (1944): On biases in estimation due to the use of preliminary tests of significance. Annals, Math. Statist., 15, 190-204.
-
(1944)
Annals, Math. Statist.
, vol.15
, pp. 190-204
-
-
Bancroft, T.A.1
-
3
-
-
38249009467
-
Bayesian approach to life testing and reliability estimation using asymmetric loss function
-
Basu, A. P. and Ebrahimi, N. (1991). Bayesian approach to life testing and reliability estimation using asymmetric loss function. Jour. Statist. Plann. Infer., 29, 21-31.
-
(1991)
Jour. Statist. Plann. Infer.
, vol.29
, pp. 21-31
-
-
Basu, A.P.1
Ebrahimi, N.2
-
4
-
-
0014737688
-
A Bayesian approach to reliability estimation using a loss function
-
Canfield. R.V. (1970). A Bayesian approach to reliability estimation using a loss function. IEEE Trans. Reliab., R-19, 13-16.
-
(1970)
IEEE Trans. Reliab.
, vol.R-19
, pp. 13-16
-
-
Canfield, R.V.1
-
7
-
-
25844440585
-
A note on the level of significance of the preliminary test in pooling variances
-
Hirano, K. (1978a). A note on the level of significance of the preliminary test in pooling variances. Jour. Japan. Statist. Soc., 8, 2, 71-75.
-
(1978)
Jour. Japan. Statist. Soc.
, vol.8
, Issue.2
, pp. 71-75
-
-
Hirano, K.1
-
8
-
-
51249186986
-
On level of significance of the preliminary test in pooling means
-
Hirano, K. (1978b). On level of significance of the preliminary test in pooling means. Ann. Inst. Statist. Math., 30, Pt. A, 1-8.
-
(1978)
Ann. Inst. Statist. Math.
, vol.30
, Issue.PART A
, pp. 1-8
-
-
Hirano, K.1
-
9
-
-
84985615009
-
Estimation of guarantee time and mean life . after warranty for two-parameter exponential failure model
-
Khattree, R. (1992). Estimation of guarantee time and mean life . after warranty for two-parameter exponential failure model. Austral. Jour. Statist., 34(2), 207-215.
-
(1992)
Austral. Jour. Statist.
, vol.34
, Issue.2
, pp. 207-215
-
-
Khattree, R.1
-
10
-
-
0346802766
-
Bayesian estimation-of mean and square of mean of normal distribution using LINEX Loss function
-
Pandey, B.N. and Rai, O. (1992). Bayesian estimation-of mean and square of mean of normal distribution using LINEX Loss function. Comm. Statist., T.M., 21(12), 3369-3391.
-
(1992)
Comm. Statist., T.M.
, vol.21
, Issue.12
, pp. 3369-3391
-
-
Pandey, B.N.1
Rai, O.2
-
11
-
-
84980138994
-
A sometimes pool estimator of the mean life
-
Ramkaran and Bhattacharya, S.K. (1984). A sometimes pool estimator of the mean life. Biometrical Journal, 26; 383-389.
-
(1984)
Biometrical Journal
, vol.26
, pp. 383-389
-
-
Ramkaran1
Bhattacharya, S.K.2
-
12
-
-
0000731832
-
On the admissibility of cx̄+d with respect to LINEX loss function
-
Rojo, J. (1987). On the admissibility of cx̄+d with respect to LINEX loss function. Comm. Statist., T.M. , 16(12), 3745-3748.
-
(1987)
Comm. Statist., T.M.
, vol.16
, Issue.12
, pp. 3745-3748
-
-
Rojo, J.1
-
13
-
-
0011663973
-
Estimation of variance after a preliminary test of homogeneity and optimal level of significance for the pre-test
-
Toyoda, T. and Wallace, T.D. (1975). Estimation of variance after a preliminary test of homogeneity and optimal level of significance for the pre-test. Jour. Econometrics, 3, 395-404.
-
(1975)
Jour. Econometrics
, vol.3
, pp. 395-404
-
-
Toyoda, T.1
Wallace, T.D.2
-
14
-
-
0001892893
-
A Bayesian approach to Real Estate Assessment
-
Eds. S.E. Feinberg and A. Zellner,Amsterdam; North Holland
-
Varian, H.R. (1975). A Bayesian approach to Real Estate Assessment. In studies in Bayesian Econometrics and Statistics in honour of L.J. Savage, Eds. S.E. Feinberg and A. Zellner,Amsterdam; North Holland, 195-208.
-
(1975)
Studies in Bayesian Econometrics and Statistics in Honour of L.J. Savage
, pp. 195-208
-
-
Varian, H.R.1
-
15
-
-
84950930899
-
Bayesian estimation and Prediction using Asymmetric loss function
-
Zellner, A. (1986). Bayesian estimation and Prediction using Asymmetric loss function. Jour. Amer. Statist. Assoc., 61, 446-451.
-
(1986)
Jour. Amer. Statist. Assoc.
, vol.61
, pp. 446-451
-
-
Zellner, A.1
|