-
1
-
-
33646656794
-
-
G. Vergara, L.J. Gomez, J. Capmany, and M.T. Montojo, Surf. Sci. 131, 278 (1992).
-
(1992)
Surf. Sci.
, vol.131
, pp. 278
-
-
Vergara, G.1
Gomez, L.J.2
Capmany, J.3
Montojo, M.T.4
-
3
-
-
0000601057
-
-
H. Hamamatsu, H.W. Yeom, T. Yokoyama, T. Kayama, and T. Ohta, Phys. Rev. B 57, 11 883 (1998).
-
(1998)
Phys. Rev. B
, vol.57
, pp. 11 883
-
-
Hamamatsu, H.1
Yeom, H.W.2
Yokoyama, T.3
Kayama, T.4
Ohta, T.5
-
4
-
-
33646646277
-
-
M. Prietsch, M. Domke, T. Mandel, C. Xue, and G. Kaindl, Z. Phys. B: Condens. Matter 74, 1989 (1989).
-
(1989)
Z. Phys. B: Condens. Matter
, vol.74
, pp. 1989
-
-
Prietsch, M.1
Domke, M.2
Mandel, T.3
Xue, C.4
Kaindl, G.5
-
5
-
-
0346131406
-
-
J.A. Martin-Gago, M.C. Asensio, P. Aebi, R. Fasel, D. Naumovic, J. Osterwalder, M.C. Refolio, J.M. Lopez-Sancho, and J. Rubio, Phys. Rev. B 57, 9201 (1998).
-
(1998)
Phys. Rev. B
, vol.57
, pp. 9201
-
-
Martin-Gago, J.A.1
Asensio, M.C.2
Aebi, P.3
Fasel, R.4
Naumovic, D.5
Osterwalder, J.6
Refolio, M.C.7
Lopez-Sancho, J.M.8
Rubio, J.9
-
8
-
-
0001551306
-
-
L.J. Whitman, J.A. Stroscio, R.A. Dragoset, and R.J. Celotta, Phys. Rev. Lett. 66, 1338 (1991).
-
(1991)
Phys. Rev. Lett.
, vol.66
, pp. 1338
-
-
Whitman, L.J.1
Stroscio, J.A.2
Dragoset, R.A.3
Celotta, R.J.4
-
9
-
-
0042659925
-
-
references therein
-
H.L. Meyerheim, R. Sawitzki, and W. Moritz, Phys. Rev. B 52, 16 830 (1995), and references therein.
-
(1995)
Phys. Rev. B
, vol.52
, pp. 16 830
-
-
Meyerheim, H.L.1
Sawitzki, R.2
Moritz, W.3
-
10
-
-
0000759927
-
-
references therein
-
H.L. Meyerheim, N. Jedrecy, M. Sauvage-Simkin, and R. Pinchaux, Phys. Rev. B 58, 2118 (1998), and references therein.
-
(1998)
Phys. Rev. B
, vol.58
, pp. 2118
-
-
Meyerheim, H.L.1
Jedrecy, N.2
Sauvage-Simkin, M.3
Pinchaux, R.4
-
11
-
-
0037104428
-
-
M.G. Betti, V. Corradini, M. Sauvage-Simkin, and R. Pinchaux, Phys. Rev. B 66, 085335 (2002).
-
(2002)
Phys. Rev. B
, vol.66
, pp. 085335
-
-
Betti, M.G.1
Corradini, V.2
Sauvage-Simkin, M.3
Pinchaux, R.4
-
16
-
-
84912932085
-
-
P.N. First, R.A. Dragoset, J.A. Stroscio, R.J. Celotta, and R.M. Feenstra, J. Vac. Sci. Technol. A 7, 2868 (1989).
-
(1989)
J. Vac. Sci. Technol. A
, vol.7
, pp. 2868
-
-
First, P.N.1
Dragoset, R.A.2
Stroscio, J.A.3
Celotta, R.J.4
Feenstra, R.M.5
-
17
-
-
0004553055
-
-
D.M. Riffe, G.K. Wertheim, J.E. Rowe, and P.H. Citrin, Phys. Rev. B 45, 3532 (1992).
-
(1992)
Phys. Rev. B
, vol.45
, pp. 3532
-
-
Riffe, D.M.1
Wertheim, G.K.2
Rowe, J.E.3
Citrin, P.H.4
-
19
-
-
3743067479
-
-
V. Heine, Phys. Rev. 138, A1689 (1965).
-
(1965)
Phys. Rev.
, vol.138
, pp. A1689
-
-
Heine, V.1
-
20
-
-
0000674751
-
-
Y. Garreau, M. Sauvage-Simkin, N. Jedrecy, R. Pinchaux, and M.B. Veron, Phys. Rev. B 54, 17 638 (1996).
-
(1996)
Phys. Rev. B
, vol.54
, pp. 17 638
-
-
Garreau, Y.1
Sauvage-Simkin, M.2
Jedrecy, N.3
Pinchaux, R.4
Veron, M.B.5
-
21
-
-
3242876584
-
-
T. Hashizume, Q.K. Xue, J. Zhou, A. Ichimiya, and T. Sakurai, Phys. Rev. Lett. 73, 2208 (1994).
-
(1994)
Phys. Rev. Lett.
, vol.73
, pp. 2208
-
-
Hashizume, T.1
Xue, Q.K.2
Zhou, J.3
Ichimiya, A.4
Sakurai, T.5
-
25
-
-
0006070693
-
-
R. Rincon, J. Ortega, F. Flores, A.L. Yeyati, and A. Martin-Rodero, Phys. Rev. B 52, 16 345 (1995).
-
(1995)
Phys. Rev. B
, vol.52
, pp. 16 345
-
-
Rincon, R.1
Ortega, J.2
Flores, F.3
Yeyati, A.L.4
Martin-Rodero, A.5
-
28
-
-
85038979769
-
-
The alternative strategy of including only the 6s electron in the valence and using the NLCC scheme (Ref. 27) was also considered, but it was found to yield considerably less satisfactory results
-
The alternative strategy of including only the 6s electron in the valence and using the NLCC scheme (Ref. 27) was also considered, but it was found to yield considerably less satisfactory results.
-
-
-
-
34
-
-
0036608870
-
-
O.E. Tereshchenko, V.S. Voronin, H.E. Scheibler, V.L. Alperovich, and A.S. Terekhov, Surf. Sci. 507–510, 51 (2002).
-
(2002)
Surf. Sci.
, vol.507-510
, pp. 51
-
-
Tereshchenko, O.E.1
Voronin, V.S.2
Scheibler, H.E.3
Alperovich, V.L.4
Terekhov, A.S.5
-
35
-
-
0006869082
-
-
M. Domke, T. Mandel, C. Laubschat, M. Prietsch, and G. Kaindl, Surf. Sci. 189/190, 268 (1987).
-
(1987)
Surf. Sci.
, vol.189-190
, pp. 268
-
-
Domke, M.1
Mandel, T.2
Laubschat, C.3
Prietsch, M.4
Kaindl, G.5
-
37
-
-
85039020594
-
-
−3 exist between the experimental and theoretical reduced coordinates. These differences produce an increase of (Formula presented) which is not related to Cs adsorption
-
−3 exist between the experimental and theoretical reduced coordinates. These differences produce an increase of (Formula presented) which is not related to Cs adsorption.
-
-
-
-
39
-
-
85038987322
-
-
The experimental surface does not have metallic—i.e., conductive—character, because at low coverage interactions between neighboring Cs are weak and possibly also because of charge transfer to bulk states of the solid as shown in Ref. 40. Our ideal, periodic surface calculation overestimates the strength of these interactions, so that the presence of a partially occupied band does not imply that the surface is electrically conductive
-
The experimental surface does not have metallic—i.e., conductive—character, because at low coverage interactions between neighboring Cs are weak and possibly also because of charge transfer to bulk states of the solid as shown in Ref. 40. Our ideal, periodic surface calculation overestimates the strength of these interactions, so that the presence of a partially occupied band does not imply that the surface is electrically conductive.
-
-
-
-
42
-
-
0000611911
-
-
P. Bennich, C. Puglia, P.A. Bruhwiler, A. Nilsson, A.J. Maxwell, A. Sandell, N. Martensson, and P. Rudolf, Phys. Rev. B 59, 8292 (1999).
-
(1999)
Phys. Rev. B
, vol.59
, pp. 8292
-
-
Bennich, P.1
Puglia, C.2
Bruhwiler, P.A.3
Nilsson, A.4
Maxwell, A.J.5
Sandell, A.6
Martensson, N.7
Rudolf, P.8
-
43
-
-
85038987491
-
-
The thick vacuum calculations were performed with a thinner substrate (eight layers) due to computational limitations. However, we verified that the electrostatic potential in layers 2–5 matched that of the thick slab to within 0.01 eV
-
The thick vacuum calculations were performed with a thinner substrate (eight layers) due to computational limitations. However, we verified that the electrostatic potential in layers 2–5 matched that of the thick slab to within 0.01 eV.
-
-
-
-
48
-
-
85038977490
-
-
sat, which is known to approximately correspond with the concentration of substrate atoms (Refs. 1 and 2)
-
sat, which is known to approximately correspond with the concentration of substrate atoms (Refs. 1 and 2).
-
-
-
-
49
-
-
85038984501
-
-
e = 9.0e precisely
-
e = 9.0e precisely.
-
-
-
-
50
-
-
85039015394
-
-
Values taken from http://www.webelements.com, and references therein
-
Values taken from http://www.webelements.com, and references therein.
-
-
-
-
53
-
-
18744381770
-
-
K. Kobayashi, Y. Morikawa, K. Terakura, and S. Blügel, Phys. Rev. B 45, 3469 (1992).
-
(1992)
Phys. Rev. B
, vol.45
, pp. 3469
-
-
Kobayashi, K.1
Morikawa, Y.2
Terakura, K.3
Blügel, S.4
|