-
1
-
-
34249955899
-
A non convex variational problem related to change of phase
-
P. Bauman and D. Phillips, A non convex variational problem related to change of phase, Appl. Math. Optim. 21 (1990), 113-138
-
(1990)
Appl. Math. Optim.
, vol.21
, pp. 113-138
-
-
Bauman, P.1
Phillips, D.2
-
2
-
-
0042044425
-
Existence and regularity of minimizers of non convex functionals depending on u and ▽u
-
P. Celada, Existence and regularity of minimizers of non convex functionals depending on u and ▽u, J. Math. Anal. Appl. 230 (1999), 30-56
-
(1999)
J. Math. Anal. Appl.
, vol.230
, pp. 30-56
-
-
Celada, P.1
-
3
-
-
0032443214
-
Existence and non existence of solutions to a variational problem on a square
-
P. Celada and A. Cellina, Existence and non existence of solutions to a variational problem on a square, Houston J. Math. 24 (1998), 345-375
-
(1998)
Houston J. Math.
, vol.24
, pp. 345-375
-
-
Celada, P.1
Cellina, A.2
-
4
-
-
33746952306
-
Minimizing non convex, multiple integrals: A density result
-
to appear
-
P. Celada and S. Perrotta, Minimizing non convex, multiple integrals: a density result, Proc. Roy. Soc. Edinburgh Sect. A (to appear), 1998
-
(1998)
Proc. Roy. Soc. Edinburgh Sect. A
-
-
Celada, P.1
Perrotta, S.2
-
5
-
-
85037258672
-
Minimizing nonconvex, simple integrals of product type
-
to appear
-
P. Celada and S. Perrotta, Minimizing nonconvex, simple integrals of product type, J. Differential Equations (to appear), 1999
-
(1999)
J. Differential Equations
-
-
Celada, P.1
Perrotta, S.2
-
6
-
-
0032222402
-
Existence of solutions for a class of non convex minimum problems
-
P. Celada, S. Perrotta, and G. Treu, Existence of solutions for a class of non convex minimum problems, Math. Z. 228 (1998), 177-199
-
(1998)
Math. Z.
, vol.228
, pp. 177-199
-
-
Celada, P.1
Perrotta, S.2
Treu, G.3
-
7
-
-
38249004838
-
On minima of a functional of the gradient: Necessary conditions
-
A. Cellina, On minima of a functional of the gradient: necessary conditions, Nonlinear Anal. 20 (1993), 337-341
-
(1993)
Nonlinear Anal.
, vol.20
, pp. 337-341
-
-
Cellina, A.1
-
8
-
-
38249005312
-
On minima of a functional of the gradient: Sufficient conditions
-
A. Cellina, On minima of a functional of the gradient: sufficient conditions, Nonlinear Anal. 20 (1993), 343-347
-
(1993)
Nonlinear Anal.
, vol.20
, pp. 343-347
-
-
Cellina, A.1
-
10
-
-
0000780871
-
On minima of radially symmetric functionals of the gradient
-
A. Cellina and S. Perrotta, On minima of radially symmetric functionals of the gradient, Nonlinear Anal. 23 (1994), 239-249
-
(1994)
Nonlinear Anal.
, vol.23
, pp. 239-249
-
-
Cellina, A.1
Perrotta, S.2
-
11
-
-
85046526526
-
Existence, uniqueness and qualitative properties of minima to radially symmetric, noncoercive, nonconvex variational problems
-
to appear
-
G. Crasta, Existence, uniqueness and qualitative properties of minima to radially symmetric, noncoercive, nonconvex variational problems, Math. Z. (to appear), 1998
-
(1998)
Math. Z.
-
-
Crasta, G.1
-
12
-
-
0001008906
-
On the minimum problem for a class of noncoercive, nonconvex variational problems
-
G. Crasta, On the minimum problem for a class of noncoercive, nonconvex variational problems, SIAM J. Control Optim. 38 (1999), 237-253
-
(1999)
SIAM J. Control Optim.
, vol.38
, pp. 237-253
-
-
Crasta, G.1
-
13
-
-
0011216933
-
On the Dirichlet problem for Hamilton-Jacobi equations. A Baire category approach
-
F. S. De Blasi and G. Pianigiani, On the Dirichlet problem for Hamilton-Jacobi equations. A Baire category approach, NoDEA Nonlinear Differential Equations Appl. 6 (1999), 13-34
-
(1999)
NoDEA Nonlinear Differential Equations Appl.
, vol.6
, pp. 13-34
-
-
De Blasi, F.S.1
Pianigiani, G.2
-
14
-
-
0003244186
-
Convex analysis and variational problems
-
North Holland, Amsterdam
-
I. Ekeland and R. Temam, Convex analysis and variational problems, Studies in Mathematics and its Applications, no. 1, North Holland, Amsterdam, 1976
-
(1976)
Studies in Mathematics and Its Applications
, vol.1
-
-
Ekeland, I.1
Temam, R.2
-
15
-
-
84973960437
-
A necessary and sufficient condition for nonattainment and formation of microstructure almost everywhere in scalar variational problems
-
G. Friesecke, A necessary and sufficient condition for nonattainment and formation of microstructure almost everywhere in scalar variational problems, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994), 437-171
-
(1994)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.124
, pp. 437-1171
-
-
Friesecke, G.1
-
16
-
-
0000602302
-
Existence of minimizers for some non convex one dimensional integrals
-
N. Fusco, P. Marcellini, and A. Ornelas, Existence of minimizers for some non convex one dimensional integrals, Portugal. Math. 55 (1998), 167-185
-
(1998)
Portugal. Math.
, vol.55
, pp. 167-185
-
-
Fusco, N.1
Marcellini, P.2
Ornelas, A.3
-
17
-
-
0001812542
-
On the regularity of the minima of variational integrals
-
M. Giaquinta and E. Giusti, On the regularity of the minima of variational integrals, Acta Math. 148 (1982), 31-46
-
(1982)
Acta Math.
, vol.148
, pp. 31-46
-
-
Giaquinta, M.1
Giusti, E.2
-
18
-
-
0022766604
-
Numerical study of a relaxed variational problem from optimal design
-
J. Goodman, R. V. Kohn, and L. Reyna, Numerical study of a relaxed variational problem from optimal design, Comput. Methods Appl. Mech. Engrg. 57 (1986), 107-127
-
(1986)
Comput. Methods Appl. Mech. Engrg.
, vol.57
, pp. 107-127
-
-
Goodman, J.1
Kohn, R.V.2
Reyna, L.3
-
20
-
-
0000439529
-
Analysis and numerical studies of a problem of shape design
-
B. Kawhol, J. Stara, and G. Wittum, Analysis and numerical studies of a problem of shape design, Arch. Rational Mech. Anal. 114 (1991), 349-363
-
(1991)
Arch. Rational Mech. Anal.
, vol.114
, pp. 349-363
-
-
Kawhol, B.1
Stara, J.2
Wittum, G.3
-
21
-
-
0003251206
-
Linear and quasilinear elliptic equations
-
Academic Press, New York
-
O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and quasilinear elliptic equations, Mathematics in Science and Engineering, no. 46, Academic Press, New York, 1968
-
(1968)
Mathematics in Science and Engineering
, vol.46
-
-
Ladyzhenskaya, O.A.1
Ural'tseva, N.N.2
-
22
-
-
84987788617
-
A relation between existence of minima for non convex integrals and uniqueness for non strictly convex integrals of the Calculus of Variations
-
Mathematical theories of optimization (S. Margherita Ligure (1981)) (J. P. Cecconi and T. Zolezzi, eds.), Springer, Berlin
-
P. Marcellini, A relation between existence of minima for non convex integrals and uniqueness for non strictly convex integrals of the Calculus of Variations, in Mathematical theories of optimization (S. Margherita Ligure (1981)) (J. P. Cecconi and T. Zolezzi, eds.), Lecture Notes in Math., no. 979, Springer, Berlin, 1983, pp. 216-231
-
(1983)
Lecture Notes in Math.
, vol.979
, pp. 216-231
-
-
Marcellini, P.1
-
23
-
-
84924362904
-
Non convex integrals of the Calculus of Variations
-
Methods of non convex analysis (Varenna (1989)) (A. Cellina, ed.), Springer, Berlin
-
P. Marcellini, Non convex integrals of the Calculus of Variations, in Methods of non convex analysis (Varenna (1989)) (A. Cellina, ed.), Lecture Notes in Math., no. 1446, Springer, Berlin, 1990, pp. 16-57
-
(1990)
Lecture Notes in Math.
, vol.1446
, pp. 16-57
-
-
Marcellini, P.1
-
24
-
-
0003246772
-
Multiple integrals in the Calculus of Variations
-
Springer, Berlin
-
C. B. Morrey, Multiple integrals in the Calculus of Variations, Grundlehren Math. Wiss., no. 130, Springer, Berlin, 1966
-
(1966)
Grundlehren Math. Wiss.
, vol.130
-
-
Morrey, C.B.1
-
25
-
-
0001496391
-
Calcul des variations et homogénéization
-
Les methodes de l'homogénéization: thèorie et applications en physique (Bréau sans Nappe (1983)) (D. Bergman et al., eds.), Eyrolles, Paris
-
F. Murat and L. Tartar, Calcul des variations et homogénéization, in Les methodes de l'homogénéization: thèorie et applications en physique (Bréau sans Nappe (1983)) (D. Bergman et al., eds.), Collect. Dir. Études Rech. Élec. France, no. 57, Eyrolles, Paris, 1985, pp. 316-369
-
(1985)
Collect. Dir. Études Rech. Élec. France
, vol.57
, pp. 316-369
-
-
Murat, F.1
Tartar, L.2
-
26
-
-
0011207047
-
Existence of minimizers for vector problems without quasiconvexity condition
-
J. P. Raymond, Existence of minimizers for vector problems without quasiconvexity condition, Nonlinear Anal. 18 (1992), 815-825
-
(1992)
Nonlinear Anal.
, vol.18
, pp. 815-825
-
-
Raymond, J.P.1
-
27
-
-
0004267646
-
-
Princeton University Press, Princeton NJ
-
T. Rockafeller, Convex analysis, Princeton University Press, Princeton NJ, 1972
-
(1972)
Convex Analysis
-
-
Rockafeller, T.1
-
29
-
-
0032398499
-
An existence result for a class of non convex problems of the Calculus of Variations
-
G. Treu, An existence result for a class of non convex problems of the Calculus of Variations, J. Convex Anal. 5 (1998), 31-44
-
(1998)
J. Convex Anal.
, vol.5
, pp. 31-44
-
-
Treu, G.1
-
31
-
-
0033902409
-
Minimization of functionals of the gradient by Baire's theorem
-
S. Zagatti, Minimization of functionals of the gradient by Baire's theorem, SIAM J. Control Optim. 38 (2000), 384-399
-
(2000)
SIAM J. Control Optim.
, vol.38
, pp. 384-399
-
-
Zagatti, S.1
|