메뉴 건너뛰기




Volumn 84, Issue 1-2, 2000, Pages 111-120

Empirical Bayes estimation for truncation parameters

Author keywords

Asymptotic optimality; Empirical Bayes estimator; Squared error loss; Truncation parameter

Indexed keywords


EID: 0346856221     PISSN: 03783758     EISSN: None     Source Type: Journal    
DOI: 10.1016/s0378-3758(99)00113-5     Document Type: Article
Times cited : (9)

References (14)
  • 2
    • 84945013463 scopus 로고
    • -1/2) rate of a truncation parameter
    • -1/2) rate of a truncation parameter Statist. Decisions. 9:1991;45-61.
    • (1991) Statist. Decisions , vol.9 , pp. 45-61
    • Datta, S.1
  • 3
    • 0012228449 scopus 로고
    • Empirical Bayes estimation in a threshold model
    • Datta S. Empirical Bayes estimation in a threshold model. Sankhy. ā 56:1994;106-117.
    • (1994) Sankhyā , vol.56 , pp. 106-117
    • Datta, S.1
  • 4
    • 0012229175 scopus 로고
    • Solution to empirical Bayes squared error loss estimation problems
    • Fox R. Solution to empirical Bayes squared error loss estimation problems. Ann. Statist. 6:1978;846-853.
    • (1978) Ann. Statist. , vol.6 , pp. 846-853
    • Fox, R.1
  • 5
    • 0042923523 scopus 로고
    • Empirical Bayes testing procedures in some nonexponential families using asymmetric Linex loss function
    • Huang S.Y. Empirical Bayes testing procedures in some nonexponential families using asymmetric Linex loss function. J. Statist. Plann. Inference. 46:1995;293-309.
    • (1995) J. Statist. Plann. Inference , vol.46 , pp. 293-309
    • Huang, S.Y.1
  • 6
    • 0030554719 scopus 로고    scopus 로고
    • Optimal rates of convergence of empirical Bayes tests for the continuous one-parameter exponential family
    • Karunamuni R.J. Optimal rates of convergence of empirical Bayes tests for the continuous one-parameter exponential family. Ann. Statist. 24:1996;212-231.
    • (1996) Ann. Statist. , vol.24 , pp. 212-231
    • Karunamuni, R.J.1
  • 7
    • 38249001773 scopus 로고
    • Convergence rates for empirical Bayes estimation of the scale parameter in a Pareto distribution
    • Liang T. Convergence rates for empirical Bayes estimation of the scale parameter in a Pareto distribution. Comput. Statist. Data Anal. 16:1993;35-46.
    • (1993) Comput. Statist. Data Anal. , vol.16 , pp. 35-46
    • Liang, T.1
  • 9
    • 0009114930 scopus 로고
    • Optimal convergence properties of kernel estimates of derivatives of a density function
    • Springer, Berlin
    • Müller, H.G., Gasser, T., 1979. Optimal convergence properties of kernel estimates of derivatives of a density function. Lecture Notes in Mathematics, vol. 757. Springer, Berlin, pp. 144-154.
    • (1979) Lecture Notes in Mathematics , vol.757 , pp. 144-154
    • Müller, H.G.1    Gasser, T.2
  • 10
    • 0000887025 scopus 로고
    • Convergence rates for empirical Bayes estimation in the uniform U(0,θ) distribution
    • Nogami Y. Convergence rates for empirical Bayes estimation in the uniform. U(0,θ) distribution Ann. Statist. 16:1988;1335-1341.
    • (1988) Ann. Statist. , vol.16 , pp. 1335-1341
    • Nogami, Y.1
  • 11
    • 0347427596 scopus 로고
    • Estimation of prior distribution and empirical Bayes estimation in a non-exponential family
    • Prasad B., Singh R.S. Estimation of prior distribution and empirical Bayes estimation in a non-exponential family. J. Statist. Plann. Inference. 24:1990;81-86.
    • (1990) J. Statist. Plann. Inference , vol.24 , pp. 81-86
    • Prasad, B.1    Singh, R.S.2
  • 13
    • 0000636119 scopus 로고
    • Empirical Bayes with rates and best rates of convergence in u(x)c(θ)exp(-x/θ)-family: Estimation case
    • Singh R.S., Wei L. Empirical Bayes with rates and best rates of convergence in. u(x)c(θ)exp(-x/θ) -family: Estimation case Ann. Institute of Statist. Math. 44:1992;435-449.
    • (1992) Ann. Institute of Statist. Math. , vol.44 , pp. 435-449
    • Singh, R.S.1    Wei, L.2
  • 14
    • 0012281268 scopus 로고
    • Monotone empirical Bayes test for uniform distribution using the maximum likelihood estimator of a decreasing density
    • Van Houwelingen H.C. Monotone empirical Bayes test for uniform distribution using the maximum likelihood estimator of a decreasing density. Ann. Statist. 15:1987;875-879.
    • (1987) Ann. Statist. , vol.15 , pp. 875-879
    • Van Houwelingen, H.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.