-
1
-
-
0002534194
-
The lazy lambda calculus
-
D. A. Turner, ed. Addison-Wesley
-
S. Abramsky. The lazy lambda calculus. In Research Topics in Functional Programming, D. A. Turner, ed. pp. 65-116. Addison-Wesley, 1977.
-
(1977)
Research Topics in Functional Programming
, pp. 65-116
-
-
Abramsky, S.1
-
2
-
-
77956968984
-
An introduction to inductive definitions
-
J. Barwise, ed. North-Holland
-
P. Aczel. An introduction to inductive definitions. In Handbook of Mathematical Logic, J. Barwise, ed. pp. 739-782. North-Holland, 1977.
-
(1977)
Handbook of Mathematical Logic
, pp. 739-782
-
-
Aczel, P.1
-
4
-
-
0030173760
-
TPS: A theorem proving system for classical type theory
-
in press
-
P. B. Andrews, M. Bishop, S. Issar, D. Nesmith, F. Pfenning and H. Xi. TPS: A theorem proving system for classical type theory. Journal of Automated Reasoning, 16, 1996 (in press).
-
(1996)
Journal of Automated Reasoning
, vol.16
-
-
Andrews, P.B.1
Bishop, M.2
Issar, S.3
Nesmith, D.4
Pfenning, F.5
Xi, H.6
-
6
-
-
0003180840
-
A formulation of the simple theory of types
-
A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic, 5, 56-68, 1940.
-
(1940)
Journal of Symbolic Logic
, vol.5
, pp. 56-68
-
-
Church, A.1
-
8
-
-
84944233413
-
Inductively defined types
-
COLOG-88: International Conference on Computer Logic, Estonian Academy of Sciences, Tallinn, P. Martin-Löf and G. Mints, eds. Springer
-
T. Coquand and C. Paulin. Inductively defined types. In COLOG-88: International Conference on Computer Logic, Estonian Academy of Sciences, Tallinn, P. Martin-Löf and G. Mints, eds. pp. 50-66. Vol. 417 of Lecture Notes in Computer Science, Springer, 1990.
-
(1990)
Lecture Notes in Computer Science
, vol.417
, pp. 50-66
-
-
Coquand, T.1
Paulin, C.2
-
11
-
-
9444261462
-
A case study of co-induction in Isabelle
-
Computer Laboratory, University of Cambridge, February
-
J. Frost. A case study of co-induction in Isabelle. Technical Report 359, Computer Laboratory, University of Cambridge, February 1995.
-
(1995)
Technical Report 359
-
-
Frost, J.1
-
12
-
-
0001845685
-
Inductive and coinductive types with iteration and recursion
-
Båstad, June B. Nordström, K. Petersson and G. Plotkin, eds. Informal proceedings
-
H. Geuvers. Inductive and coinductive types with iteration and recursion. In Types for Proofs and Programs, Båstad, June 1992, B. Nordström, K. Petersson and G. Plotkin, eds. pp. 193-217. Informal proceedings.
-
(1992)
Types for Proofs and Programs
, pp. 193-217
-
-
Geuvers, H.1
-
13
-
-
0003432047
-
-
Cambridge University Press, Translated by Y. Lafont and P. Taylor
-
J.-Y. Girard. Proofs and Types. Cambridge University Press, 1989. Translated by Y. Lafont and P. Taylor.
-
(1989)
Proofs and Types
-
-
Girard, J.-Y.1
-
16
-
-
84956853741
-
A broader class of trees for recursive type definitions for HOL
-
Higher Order Logic Theorem Proving and Its Applications: HUG '93, J. Joyce and C. Seger, eds. Springer
-
E. L. Gunter. A broader class of trees for recursive type definitions for HOL. In Higher Order Logic Theorem Proving and Its Applications: HUG '93, J. Joyce and C. Seger, eds. pp. 141-154. Vol. 780 of Lecture Notes in Computer Science, Springer, 1994.
-
(1994)
Lecture Notes in Computer Science
, vol.780
, pp. 141-154
-
-
Gunter, E.L.1
-
17
-
-
84947980044
-
Programming with streams in Coq. A case study: The sieve of Eratosthenes
-
Types for Proofs and Programs: International Workshop TYPES '93, H. Barendregt and T. Nipkow, eds. Springer
-
F. Leclerc and C. Paulin-Mohring. Programming with streams in Coq. A case study: the sieve of Eratosthenes. In Types for Proofs and Programs: International Workshop TYPES '93, H. Barendregt and T. Nipkow, eds. pp. 191-212. Vol. 806 of Lecture Notes in Computer Science, Springer, 1993.
-
(1993)
Lecture Notes in Computer Science
, vol.806
, pp. 191-212
-
-
Leclerc, F.1
Paulin-Mohring, C.2
-
18
-
-
0043036818
-
Automating recursive type definitions in higher order logic
-
G. Birtwistle and P. A. Subrahmanyam, eds. Springer
-
T.F.Melham. Automating recursive type definitions in higher order logic. In Current Trends in Hardware Verification and Automated Theorem Proving, G. Birtwistle and P. A. Subrahmanyam, eds. pp. 341-386. Springer, 1989.
-
(1989)
Current Trends in Hardware Verification and Automated Theorem Proving
, pp. 341-386
-
-
Melham, T.F.1
-
19
-
-
0023168916
-
Recursive types and type constraints in second-order lambda calculus
-
IEEE Computer Society Press
-
N. P. Mendier. Recursive types and type constraints in second-order lambda calculus. In Second Annual Symposium on Logic in Computer Science, pp. 30-36. IEEE Computer Society Press, 1987.
-
(1987)
Second Annual Symposium on Logic in Computer Science
, pp. 30-36
-
-
Mendier, N.P.1
-
23
-
-
0003299970
-
The foundation of a generic theorem prover
-
L. C. Paulson. The foundation of a generic theorem prover. Journal of Automated Reasoning, 5, 363-397, 1989.
-
(1989)
Journal of Automated Reasoning
, vol.5
, pp. 363-397
-
-
Paulson, L.C.1
-
24
-
-
0006798044
-
Set theory for verification: I. From foundations to functions
-
L. C. Paulson. Set theory for verification: I. From foundations to functions. Journal of Automated Reasoning, 11, 353-389, 1993.
-
(1993)
Journal of Automated Reasoning
, vol.11
, pp. 353-389
-
-
Paulson, L.C.1
-
26
-
-
0029387254
-
Set theory for verification: II. Induction and recursion
-
L. C. Paulson. Set theory for verification: II. Induction and recursion. Journal of Automated Reasoning, 15, 167-215, 1995.
-
(1995)
Journal of Automated Reasoning
, vol.15
, pp. 167-215
-
-
Paulson, L.C.1
-
27
-
-
0009164569
-
A concrete final coalgebra theorem for ZF set theory
-
Types for Proofs and Programs: International Workshop TYPES '94, P. Dybjer, B. Nordström and J. Smith, eds. Springer
-
L. C. Paulson. A concrete final coalgebra theorem for ZF set theory. In Types for Proofs and Programs: International Workshop TYPES '94, P. Dybjer, B. Nordström and J. Smith, eds. pp. 120-139. Vol. 996 of Lecture Notes in Computer Science, Springer, 1995.
-
(1995)
Lecture Notes in Computer Science
, vol.996
, pp. 120-139
-
-
Paulson, L.C.1
-
28
-
-
0028380721
-
A co-induction principle for recursively defined domains
-
A. M. Pitts. A co-induction principle for recursively defined domains. Theoretical Computer Science, 124, 195-219, 1994.
-
(1994)
Theoretical Computer Science
, vol.124
, pp. 195-219
-
-
Pitts, A.M.1
-
29
-
-
84962687423
-
On the foundations of final semantics: Non-standard sets, metric spaces, partial orders
-
Semantics: Foundations and Applications, J. de Bakker, W.-P. de Roever and G. Rozenberg, eds. Springer
-
J. J. M. M. Rutten and D. Tun. On the foundations of final semantics: Non-standard sets, metric spaces, partial orders. In Semantics: Foundations and Applications, J. de Bakker, W.-P. de Roever and G. Rozenberg, eds. pp. 477-530. Vol. 666 of Lecture Notes in Computer Science, Springer, 1993.
-
(1993)
Lecture Notes in Computer Science
, vol.666
, pp. 477-530
-
-
Rutten, J.J.M.M.1
Tun, D.2
-
30
-
-
0027910876
-
A type-theoretical alternative to ISWIM, CUCH, OWHY
-
Annotated version of the 1969 manuscript
-
D. S. Scott. A type-theoretical alternative to ISWIM, CUCH, OWHY. Theoretical Computer Science, 121, 411-440, 1993. Annotated version of the 1969 manuscript.
-
(1993)
Theoretical Computer Science
, vol.121
, pp. 411-440
-
-
Scott, D.S.1
-
31
-
-
84972541021
-
A lattice-theoretical fixpoint theorem and its applications
-
A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics, 5, 285-309, 1955.
-
(1955)
Pacific Journal of Mathematics
, vol.5
, pp. 285-309
-
-
Tarski, A.1
-
32
-
-
0025518981
-
Type inference for polymorphic references
-
M. Tofte. Type inference for polymorphic references. Information and Computation, 89, 1-34, 1990.
-
(1990)
Information and Computation
, vol.89
, pp. 1-34
-
-
Tofte, M.1
-
33
-
-
0004169601
-
-
Cambridge University Press, Paperback edition to *56, abridged from the 2nd edition (1927)
-
A. N. Whitehead and B. Russell. Principia Mathematica. Cambridge University Press, 1962. Paperback edition to *56, abridged from the 2nd edition (1927).
-
(1962)
Principia Mathematica
-
-
Whitehead, A.N.1
Russell, B.2
|