-
2
-
-
84990617031
-
Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth
-
Caffarelli L., Gidas B., Spruck J. Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Comm. Pure Appl. Math. 42:(3):1989;271-297.
-
(1989)
Comm. Pure Appl. Math.
, vol.42
, Issue.3
, pp. 271-297
-
-
Caffarelli, L.1
Gidas, B.2
Spruck, J.3
-
3
-
-
84974004406
-
Classification of solutions of some nonlinear elliptic equations
-
Chen W., Li C. Classification of solutions of some nonlinear elliptic equations. Duke Math. J. 3:(3):1991;615-622.
-
(1991)
Duke Math. J.
, vol.3
, Issue.3
, pp. 615-622
-
-
Chen, W.1
Li, C.2
-
4
-
-
21144474681
-
A geometric proof of Kwong-Mc Leod uniqueness result
-
Clemons C., Jones C. A geometric proof of Kwong-Mc Leod uniqueness result. SIAM J. Math. Anal. 24:1993;436-443.
-
(1993)
SIAM J. Math. Anal.
, vol.24
, pp. 436-443
-
-
Clemons, C.1
Jones, C.2
-
5
-
-
0015249887
-
3 = 0 and a variational characterization of other solutions
-
3 = 0 and a variational characterization of other solutions. Arch. Rational Mech. Anal. 46:1972;81-95.
-
(1972)
Arch. Rational Mech. Anal.
, vol.46
, pp. 81-95
-
-
Coffman, C.1
-
7
-
-
0010875886
-
Uniqueness of the positive solution for singular non-linear boundary value problems
-
Deng Y., Cao D. Uniqueness of the positive solution for singular non-linear boundary value problems. Syst. Sci Math. Sci. 6:1993;25-31.
-
(1993)
Syst. Sci Math. Sci.
, vol.6
, pp. 25-31
-
-
Deng, Y.1
Cao, D.2
-
8
-
-
0031579129
-
Structure of positive radial solutions of semilinear elliptic equation
-
Erbe L., Tang M. Structure of positive radial solutions of semilinear elliptic equation. J. Differential Equations. 133:1997;179-202.
-
(1997)
J. Differential Equations
, vol.133
, pp. 179-202
-
-
Erbe, L.1
Tang, M.2
-
9
-
-
0013494039
-
Symmetry and isolated singularitiesof positive solutions of nonlinear elliptic equations
-
Nonlinear Partial Differential Equations in Engineering and Applied Science (Proc. Conf., Univ. Rhode Island, Kingston, RI, 1979) New York: Dekker
-
Gidas B. Symmetry and isolated singularitiesof positive solutions of nonlinear elliptic equations. Nonlinear Partial Differential Equations in Engineering and Applied Science (Proc. Conf., Univ. Rhode Island, Kingston, RI, 1979). Lecture Notes in Pure Appl. Math. 54:1980;255-273 Dekker, New York.
-
(1980)
Lecture Notes in Pure Appl. Math.
, vol.54
, pp. 255-273
-
-
Gidas, B.1
-
10
-
-
84980182383
-
Global and local behavior of positive solutions of nonlinear elliptic equations
-
Gidas B., Spruck J. Global and local behavior of positive solutions of nonlinear elliptic equations. Comm. Pure Appl. Math. 34:1981;525-598.
-
(1981)
Comm. Pure Appl. Math.
, vol.34
, pp. 525-598
-
-
Gidas, B.1
Spruck, J.2
-
12
-
-
38248999673
-
Existence and asymptotic behavior of nodal solution for semilinear elliptic equation
-
Kajikiya R. Existence and asymptotic behavior of nodal solution for semilinear elliptic equation. J. Differential Equations. 106:1993;238-256.
-
(1993)
J. Differential Equations
, vol.106
, pp. 238-256
-
-
Kajikiya, R.1
-
13
-
-
84980080697
-
The heavy rotating string - A nonlinear eigenvalue problem
-
Kolodner I. The heavy rotating string - a nonlinear eigenvalue problem. Comm. Pure Appl. Math. 8:1955;395-408.
-
(1955)
Comm. Pure Appl. Math.
, vol.8
, pp. 395-408
-
-
Kolodner, I.1
-
15
-
-
84972508309
-
Uniqueness of positive solution of Δu+f(u) = 0 in an annulus
-
Kwong M.K., Zhang L. Uniqueness of positive solution of Δu+f(u) = 0 in an annulus. Differential Integral Equations. 4:1991;583-596.
-
(1991)
Differential Integral Equations
, vol.4
, pp. 583-596
-
-
Kwong, M.K.1
Zhang, L.2
-
16
-
-
84990576581
-
Uniqueness and nonuniqueness for positive radial solutions of Δu+f(u,r) = 0
-
Ni W.M., Nussbaum R. Uniqueness and nonuniqueness for positive radial solutions of Δu+f(u,r) = 0 . Comm. Pure Appl. Math. 38:1985;67-108.
-
(1985)
Comm. Pure Appl. Math.
, vol.38
, pp. 67-108
-
-
Ni, W.M.1
Nussbaum, R.2
-
17
-
-
0000514956
-
Eigenfunctions of the equation Δu+λf(u) = 0
-
Pohozaev S.I. Eigenfunctions of the equation Δu+λf(u) = 0 . Soviet Math. 5:1965;1408-1411.
-
(1965)
Soviet Math.
, vol.5
, pp. 1408-1411
-
-
Pohozaev, S.I.1
|