메뉴 건너뛰기




Volumn 91, Issue 23, 2003, Pages

Relativistic chaos is coordinate invariant

Author keywords

[No Author keywords available]

Indexed keywords

ASTROPHYSICS; CHAOS THEORY; ITERATIVE METHODS; LYAPUNOV METHODS; MATHEMATICAL TRANSFORMATIONS; PHASE SPACE METHODS; PROBLEM SOLVING; VECTORS;

EID: 0346686286     PISSN: 00319007     EISSN: 10797114     Source Type: Journal    
DOI: 10.1103/PhysRevLett.91.231101     Document Type: Article
Times cited : (64)

References (28)
  • 2
    • 0012609517 scopus 로고    scopus 로고
    • W.M. Vieira and P.S. Letelier, Phys. Rev. Lett. 76, 1409 (1996).10.1103/PhysRevLett.76.1409
    • (1996) Phys. Rev. Lett. , vol.76 , pp. 1409
  • 3
    • 0001848227 scopus 로고
    • J.D. Barrow, Phys. Rep. 85, 1 (1982).10.1016/0370-1573(82)90171-5
    • (1982) Phys. Rep. , vol.85 , pp. 1
    • Barrow, J.D.1
  • 5
  • 8
    • 0014808945 scopus 로고
    • V.A. Belinskii, I.M. Khalatnikov, and E.M. Lifshitz, Adv. Phys. 19, 525 (1970).
    • (1970) Adv. Phys. , vol.19 , pp. 525
  • 15
    • 0001599301 scopus 로고    scopus 로고
    • N.J. Cornish and J.J. Levin, Phys. Rev. D 55, 7489 (1997).10.1103/PhysRevD.55.7489
    • (1997) Phys. Rev. D , vol.55 , pp. 7489
  • 18
    • 0035796433 scopus 로고    scopus 로고
    • A.E. Motter and P.S. Letelier, Phys. Lett. A 285, 127 (2001).10.1016/S0375-9601(01)00349-8
    • (2001) Phys. Lett. A , vol.285 , pp. 127
  • 19
    • 0041331413 scopus 로고    scopus 로고
    • R.D. Ramey and N.L. Balazs, Found. Phys.FNDPA4 31, 371 (2001).10.1023/A:1017598705383
    • (2001) Found. Phys. , vol.31 , pp. 371
  • 21
  • 23
    • 85038273766 scopus 로고    scopus 로고
    • We exclude the cases where the measure accumulates on trivial subsets of the invariant set, such as isolated points and simple boundaries
    • We exclude the cases where the measure accumulates on trivial subsets of the invariant set, such as isolated points and simple boundaries
  • 24
    • 35949018382 scopus 로고
    • The orbits in the extended phase space will be unbounded along (Formula presented). When the transformed system depends only periodically on (Formula presented), this can be remedied by taking (Formula presented) rather than (Formula presented) as the new phase-space coordinate, where (Formula presented) is the period of the time dependence. Lyapunov exponents can also be defined for some nonautonomous systems [J.-P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57, 617 (1985)].10.1103/RevModPhys.57.617
    • (1985) Rev. Mod. Phys. , vol.57 , pp. 617
    • Eckmann, J.-P.1    Ruelle, D.2
  • 25
    • 85038273688 scopus 로고    scopus 로고
    • A.E. Motter and P.S. Letelier, Phys. Rev. D 65, 068502 (2002).10.1103/PhysRevD.65.068502
    • (2002) Phys. Rev. D , vol.65 , pp. 68502
  • 28
    • 85038340643 scopus 로고    scopus 로고
    • When the relevant invariant sets are saddles rather than attractors, the numerical computation of Lyapunov exponents on these sets might be a highly nontrivial task. This technical problem can be overcome, however, with the manifestly invariant fractal techniques of Ref.�
    • When the relevant invariant sets are saddles rather than attractors, the numerical computation of Lyapunov exponents on these sets might be a highly nontrivial task. This technical problem can be overcome, however, with the manifestly invariant fractal techniques of Ref.�


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.