메뉴 건너뛰기




Volumn 74, Issue 1-2, 2003, Pages 278-285

Polynomial Wavelet-Type Expansions on the Sphere

Author keywords

Dual wavelet; Polynomial expansion; Polynomial wavelet type expansion; Wavelet

Indexed keywords


EID: 0346494533     PISSN: 00014346     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1025016510773     Document Type: Article
Times cited : (4)

References (15)
  • 1
    • 0346796948 scopus 로고
    • Some remarks on strongly independent sequences and bases in Banach spaces
    • C. Foias and I. Singer, "Some remarks on strongly independent sequences and bases in Banach spaces," Rev. Math. Pure et Appl. Acad. R.P.R., 6 (1961), no. 3, 589-594.
    • (1961) Rev. Math. Pure et Appl. Acad. R.P.R. , vol.6 , Issue.3 , pp. 589-594
    • Foias, C.1    Singer, I.2
  • 2
    • 0007236115 scopus 로고
    • On the growth of degrees of polynomial bases and approximation of trigonometric projections
    • Al. A. Privalov, "On the growth of degrees of polynomial bases and approximation of trigonometric projections," Mat. Zametki [Math. Notes], 42 (1987), no. 2, 207-214.
    • (1987) Mat. Zametki [Math. Notes] , vol.42 , Issue.2 , pp. 207-214
    • Privalov, Al.A.1
  • 3
    • 0007297490 scopus 로고
    • Orthogonal trigonometric Schauder bases of optimal degree for C(0, 2π)
    • R. A. Lorentz and A. A. Saakyan (Sahakian), "Orthogonal trigonometric Schauder bases of optimal degree for C(0, 2π)," J. Fourier Anal. Appl., 1 (1994), no. 1, 103-112.
    • (1994) J. Fourier Anal. Appl. , vol.1 , Issue.1 , pp. 103-112
    • Lorentz, R.A.1    Saakyan, A.A.2
  • 4
    • 0348057845 scopus 로고    scopus 로고
    • Orthogonal polynomial Schauder bases for C[-1, 1] of optimal degree
    • M. A. Skopina, "Orthogonal polynomial Schauder bases for C[-1, 1] of optimal degree," Mat. Sb. [Russian Acad. Sci. Sb. Math.], 192 (2001), no. 3, 115-136.
    • (2001) Mat. Sb. [Russian Acad. Sci. Sb. Math.] , vol.192 , Issue.3 , pp. 115-136
    • Skopina, M.A.1
  • 5
    • 0032332537 scopus 로고    scopus 로고
    • Orthogonal and non-orthogonal multiresolution analysis, scale discrete and exact fully discrete wavelet transform on the sphere
    • W. Freeden and M. Schreiner, "Orthogonal and non-orthogonal multiresolution analysis, scale discrete and exact fully discrete wavelet transform on the sphere," Constructive Approximation, 14 (1998), 493-515.
    • (1998) Constructive Approximation , vol.14 , pp. 493-515
    • Freeden, W.1    Schreiner, M.2
  • 6
    • 0346796947 scopus 로고    scopus 로고
    • B-spline wavelets on the sphere
    • Proceedings of the International Workshop (July 30-August 7, 1998, Dubna, Russia), JINR, E5-99-38, Dubna
    • Yu. Farkov, "B-spline wavelets on the sphere," in: "Self-Similar Systems, "Proceedings of the International Workshop (July 30-August 7, 1998, Dubna, Russia), JINR, E5-99-38, Dubna, 1999, pp. 79-82.
    • (1999) Self-Similar Systems , pp. 79-82
    • Farkov, Yu.1
  • 8
    • 0004093453 scopus 로고
    • Lecture Notes in Math., Springer-Verlag, Berlin
    • C. Müller, Spherical Harmonics, Lecture Notes in Math., vol. 17, Springer-Verlag, Berlin, 1966.
    • (1966) Spherical Harmonics , vol.17
    • Müller, C.1
  • 10
    • 0035608775 scopus 로고    scopus 로고
    • Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature
    • H. N. Mhaskar, F. J. Narcowich, and J. D. Ward, "Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature," Math. Comp., 70 (2001), no. 235, 1113-1130.
    • (2001) Math. Comp. , vol.70 , Issue.235 , pp. 1113-1130
    • Mhaskar, H.N.1    Narcowich, F.J.2    Ward, J.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.