-
1
-
-
0001325204
-
On the optimality of linear methods for operator approximation in convex classes of functions
-
Bakhvalov N. S. On the optimality of linear methods for operator approximation in convex classes of functions. USSR Comput. Maths. Math. Phys. 11:1971;244-249.
-
(1971)
USSR Comput. Maths. Math. Phys.
, vol.11
, pp. 244-249
-
-
Bakhvalov, N.S.1
-
2
-
-
84968516134
-
On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines
-
Blum L., Shub M., Smale S. On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bull. Amer. Math. Soc. 21:1989;1-46.
-
(1989)
Bull. Amer. Math. Soc.
, vol.21
, pp. 1-46
-
-
Blum, L.1
Shub, M.2
Smale, S.3
-
4
-
-
77957168971
-
Nonlinear approximation and adaptive techniques for solving elliptic operator equations
-
W. Dahmen, A. J. Kurdila, & P. Oswald. San Diego: Academic Press
-
Dahlke S., Dahmen W., DeVore R. A. Nonlinear approximation and adaptive techniques for solving elliptic operator equations. Dahmen W., Kurdila A. J., Oswald P. Multiscale Wavelet Methods for PDEs. 1997;237-283 Academic Press, San Diego.
-
(1997)
Multiscale Wavelet Methods for PDEs
, pp. 237-283
-
-
Dahlke, S.1
Dahmen, W.2
Devore, R.A.3
-
5
-
-
85011480386
-
Wavelet and multiscale methods for operator equations
-
Dahmen W. Wavelet and multiscale methods for operator equations. Acta Numer. 6:1997;55-228.
-
(1997)
Acta Numer.
, vol.6
, pp. 55-228
-
-
Dahmen, W.1
-
6
-
-
85009724776
-
Nonlinear approximation
-
DeVore R. A. Nonlinear approximation. Acta Numer. 7:1998;51-150.
-
(1998)
Acta Numer.
, vol.7
, pp. 51-150
-
-
Devore, R.A.1
-
9
-
-
0001633186
-
Optimal sequential and non-sequential procedures for evaluating a functional
-
Gal S., Micchelli C. A. Optimal sequential and non-sequential procedures for evaluating a functional. Appl. Anal. 10:1980;105-120.
-
(1980)
Appl. Anal.
, vol.10
, pp. 105-120
-
-
Gal, S.1
Micchelli, C.A.2
-
11
-
-
0030524914
-
Topological complexity with continuous operations
-
Hertling P. Topological complexity with continuous operations. J. Complexity. 12:1996;315-338.
-
(1996)
J. Complexity
, vol.12
, pp. 315-338
-
-
Hertling, P.1
-
12
-
-
38249020008
-
S-Numbers in information-based complexity
-
Mathé P. s-Numbers in information-based complexity. J. Complexity. 6:1990;41-66.
-
(1990)
J. Complexity
, vol.6
, pp. 41-66
-
-
Mathé, P.1
-
13
-
-
0002357859
-
The real number model in numerical analysis
-
Novak E. The real number model in numerical analysis. J. Complexity. 11:1995;57-73.
-
(1995)
J. Complexity
, vol.11
, pp. 57-73
-
-
Novak, E.1
-
14
-
-
0030242131
-
On the power of adaption
-
Novak E. On the power of adaption. J. Complexity. 12:1996;199-237.
-
(1996)
J. Complexity
, vol.12
, pp. 199-237
-
-
Novak, E.1
-
15
-
-
0030497311
-
Topological complexity of zero finding
-
Novak E., Woźniakowski H. Topological complexity of zero finding. J. Complexity. 12:1996;380-400.
-
(1996)
J. Complexity
, vol.12
, pp. 380-400
-
-
Novak, E.1
Woźniakowski, H.2
-
16
-
-
0008805499
-
On the cost of uniform and nonuniform algorithms
-
Novak E., Woźniakowski H. On the cost of uniform and nonuniform algorithms. Theoret. Comput. Sci. 219:1999;301-318.
-
(1999)
Theoret. Comput. Sci.
, vol.219
, pp. 301-318
-
-
Novak, E.1
Woźniakowski, H.2
-
17
-
-
45949121073
-
On the topology of algorithms
-
Smale S. On the topology of algorithms. J. Complexity. 3:1987;81-89.
-
(1987)
J. Complexity
, vol.3
, pp. 81-89
-
-
Smale, S.1
-
21
-
-
0006552980
-
Topological complexity of root-finding algorithms
-
J. Renegar, M. Shub, & S. Smale. Lectures in Applied Mathematics. Providence: Amer. Math. Soc.
-
Vassiliev V. A. Topological complexity of root-finding algorithms. Renegar J., Shub M., Smale S. The Mathematics of Numerical Analysis. Lectures in Applied Mathematics. 32:1996;831-856 Amer. Math. Soc. Providence.
-
(1996)
The Mathematics of Numerical Analysis
, vol.32
, pp. 831-856
-
-
Vassiliev, V.A.1
-
22
-
-
0348135300
-
Are linear algorithms always good for linear problems?
-
Werschulz A. G., Woźniakowski H. Are linear algorithms always good for linear problems? Aequationes Math. 31:1986;202-212.
-
(1986)
Aequationes Math.
, vol.31
, pp. 202-212
-
-
Werschulz, A.G.1
Woźniakowski, H.2
-
23
-
-
0346838088
-
Why does information-based complexity use the real number model?
-
Woźniakowski H. Why does information-based complexity use the real number model? Theoret. Comput. Sci. 219:1999;451-465.
-
(1999)
Theoret. Comput. Sci.
, vol.219
, pp. 451-465
-
-
Woźniakowski, H.1
|