메뉴 건너뛰기




Volumn 15, Issue 4, 1999, Pages 525-534

Exponential Growth Solutions of Elliptic Equations

Author keywords

Elliptic equations; Exponential growth function; Mean value inequality; Poincar s inequality

Indexed keywords


EID: 0346487086     PISSN: 14398516     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10114-999-0084-2     Document Type: Article
Times cited : (8)

References (7)
  • 1
    • 0031321696 scopus 로고    scopus 로고
    • Harmonic functions on manifolds
    • T H Colding, W P Minicozzi. Harmonic functions on manifolds. Ann of Math, 1997, 146(3): 725-747
    • (1997) Ann of Math , vol.146 , Issue.3 , pp. 725-747
    • Colding, T.H.1    Minicozzi, W.P.2
  • 2
    • 0032353208 scopus 로고    scopus 로고
    • Weyl type bounds for harmonic functions
    • T H Colding, W P Minicozzi. Weyl type bounds for harmonic functions. Invent Math, 1998, 131(2): 257-298
    • (1998) Invent Math , vol.131 , Issue.2 , pp. 257-298
    • Colding, T.H.1    Minicozzi, W.P.2
  • 3
    • 0031286859 scopus 로고    scopus 로고
    • Harmonic sections of polynomial growth
    • P Li. Harmonic sections of polynomial growth. Math Res Lett, 1997, 4(1): 35-44
    • (1997) Math Res Lett , vol.4 , Issue.1 , pp. 35-44
    • Li, P.1
  • 4
    • 84980087130 scopus 로고
    • A smooth linear elliptic differential equation without any solution in a sphere
    • A Pliś. A smooth linear elliptic differential equation without any solution in a sphere. Comm Pure Appl Math, 1961, 14(3): 599-617
    • (1961) Comm Pure Appl Math , vol.14 , Issue.3 , pp. 599-617
    • Pliś, A.1
  • 5
    • 0001779153 scopus 로고
    • On non-uniqueness in Cauchy problem for an elliptic second order differential equation
    • A Pliś. On non-uniqueness in Cauchy problem for an elliptic second order differential equation. Bull Acad Polon Sci Sér Sci Math Astronom Phys, 1963, 11(3): 95-100
    • (1963) Bull Acad Polon Sci Sér Sci Math Astronom Phys , vol.11 , Issue.3 , pp. 95-100
    • Pliś, A.1
  • 7
    • 84990604274 scopus 로고
    • Unique continuation for elliptic operators: A geometric variational approach
    • N Garofalo, Fanghua Lin. Unique continuation for elliptic operators: a geometric variational approach. Comm Pure Appl Math, 1987, 40(3): 347-366
    • (1987) Comm Pure Appl Math , vol.40 , Issue.3 , pp. 347-366
    • Garofalo, N.1    Fanghua, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.