메뉴 건너뛰기




Volumn 4, Issue 2, 2002, Pages 141-154

On the Convergence of Newton-Like Methods Based on M-Fréchet Differentiable Operators and Applications in Radiative Transfer

Author keywords

Banach space; Lipschitz H lder continuity; M fr chet differentiate operator; majorizing sequence; Multilinear operators; Newton like method

Indexed keywords


EID: 0346367603     PISSN: 15211398     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1012935501224     Document Type: Article
Times cited : (5)

References (9)
  • 1
    • 0004616127 scopus 로고
    • On the convergence of some nonlinear equations
    • I. K. Argyros, On the convergence of some nonlinear equations, Aequationes Mathematicae, 32, 87-95 (1987).
    • (1987) Aequationes Mathematicae , vol.32 , pp. 87-95
    • Argyros, I.K.1
  • 2
    • 0039205183 scopus 로고
    • A convergence theorem for Newton-like methods under generalized Chen-Yamamoto-type assumptions
    • I. K. Argyros, A convergence theorem for Newton-like methods under generalized Chen-Yamamoto-type assumptions, Appl. Math. Comp. 61(1), 25-37 (1994).
    • (1994) Appl. Math. Comp. , vol.61 , Issue.1 , pp. 25-37
    • Argyros, I.K.1
  • 5
    • 84968520463 scopus 로고
    • Riemann integration and Taylor's theorem in general analysis
    • L. M. Graves, Riemann integration and Taylor's theorem in general analysis, Trans. Amer. Math. Soc. 29, 163-177 (1927).
    • (1927) Trans. Amer. Math. Soc. , vol.29 , pp. 163-177
    • Graves, L.M.1
  • 6
    • 0031550718 scopus 로고    scopus 로고
    • A new semilocal convergence theorem for Newton's method
    • J. M. Gutiérrez, A new semilocal convergence theorem for Newton's method, J. Comp. Appl. Math. 79, 131-145 (1997).
    • (1997) J. Comp. Appl. Math. , vol.79 , pp. 131-145
    • Gutiérrez, J.M.1
  • 7
    • 38249006181 scopus 로고
    • A note on the Kantorovich theorem for Newton iteration
    • Z. Huang, A note on the Kantorovich theorem for Newton iteration, J. Comput. Appl. Math. 47, 211-217 (1993).
    • (1993) J. Comput. Appl. Math. , vol.47 , pp. 211-217
    • Huang, Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.