메뉴 건너뛰기




Volumn 31, Issue 4, 2003, Pages 1772-1820

Generalized covariations, local time and Stratonovich Itô's formula for fractional Brownian motion with hurst index H ≥ 1/4

Author keywords

Fourth variation; Fractional Brownian motion; Ito's formula; Local time

Indexed keywords


EID: 0346332490     PISSN: 00911798     EISSN: None     Source Type: Journal    
DOI: 10.1214/aop/1068646366     Document Type: Article
Times cited : (57)

References (44)
  • 1
    • 0038433460 scopus 로고    scopus 로고
    • Stratonovich calculus for fractional Brownian motion with Hurst parameter less than 1/2
    • ALOS, E., LÉON, J. L. and NUALART, D. (2001). Stratonovich calculus for fractional Brownian motion with Hurst parameter less than 1/2. Taiwanese J. Math. 5 609-632.
    • (2001) Taiwanese J. Math. , vol.5 , pp. 609-632
    • Alos, E.1    Léon, J.L.2    Nualart, D.3
  • 2
    • 0000338690 scopus 로고    scopus 로고
    • Stochastic calculus with respect to fractional Brownian motion with Hurst parameter less than 1/2
    • ALOS, E., MAZET, O. E. and NUALART, D. (1999). Stochastic calculus with respect to fractional Brownian motion with Hurst parameter less than 1/2. Stochastic Process. Appl. 86 121-139.
    • (1999) Stochastic Process. Appl. , vol.86 , pp. 121-139
    • Alos, E.1    Mazet, O.E.2    Nualart, D.3
  • 3
    • 0002807832 scopus 로고
    • Local non-determinism and local times of Gaussian processes
    • BERMAN, S. (1973). Local non-determinism and local times of Gaussian processes. Indiana Univ. Math. J. 23 69-94.
    • (1973) Indiana Univ. Math. J. , vol.23 , pp. 69-94
    • Berman, S.1
  • 4
    • 0000761359 scopus 로고
    • Les processus de Dirichlet en tant qu'espace de Banach
    • BERTOIN, J. (1986). Les processus de Dirichlet en tant qu'espace de Banach. Stochastics 18 155-168.
    • (1986) Stochastics , vol.18 , pp. 155-168
    • Bertoin, J.1
  • 5
    • 0013309134 scopus 로고
    • Sur la variation quadratique des temps locaux de certaines semimartingales
    • BOULEAU, N. and YOR, M. (1981). Sur la variation quadratique des temps locaux de certaines semimartingales. C. R. Acad. Sci. Paris Sér. I Math. 292 491-494.
    • (1981) C. R. Acad. Sci. Paris Sér. I Math. , vol.292 , pp. 491-494
    • Bouleau, N.1    Yor, M.2
  • 6
    • 51849133120 scopus 로고    scopus 로고
    • Integrales stochastiques pour le mouvement brownien fractionnaire
    • CARMONA, P. and COUTIN, L. (2000). Integrales stochastiques pour le mouvement brownien fractionnaire. C. R. Acad. Sci. Paris Sér. I Math. 330 213-236.
    • (2000) C. R. Acad. Sci. Paris Sér. I Math. , vol.330 , pp. 213-236
    • Carmona, P.1    Coutin, L.2
  • 8
    • 0347979526 scopus 로고    scopus 로고
    • Stochastic differential equations for fractional Brownian motions
    • COUTIN, L. and QIAN, Z. (2000). Stochastic differential equations for fractional Brownian motions. C. R. Acad. Sci. Paris Sér. I Math. 330 1-6.
    • (2000) C. R. Acad. Sci. Paris Sér. I Math. , vol.330 , pp. 1-6
    • Coutin, L.1    Qian, Z.2
  • 9
    • 0042909263 scopus 로고    scopus 로고
    • Tanaka formula for the fractional Brownian motion
    • COUTIN, L., NUALART, D. and TUDOR, C. A. (2001). Tanaka formula for the fractional Brownian motion. Stochastic Process. Appl. 94 301-315.
    • (2001) Stochastic Process. Appl. , vol.94 , pp. 301-315
    • Coutin, L.1    Nualart, D.2    Tudor, C.A.3
  • 10
    • 53349108011 scopus 로고    scopus 로고
    • Itô formula with respect to fractional Brownian motion and its application
    • DAI, W. and HEIDE, C. C. (1996). Itô formula with respect to fractional Brownian motion and its application. J. Appl. Math. Stochastic Anal. 9 439-448.
    • (1996) J. Appl. Math. Stochastic Anal. , vol.9 , pp. 439-448
    • Dai, W.1    Heide, C.C.2
  • 11
    • 0042637937 scopus 로고    scopus 로고
    • Stochastic analysis of the fractional Brownian motion
    • DECREUSEFOND, L. and USTUNEL, A. S. (1998). Stochastic analysis of the fractional Brownian motion. Potential Anal. 10 177-214.
    • (1998) Potential Anal. , vol.10 , pp. 177-214
    • Decreusefond, L.1    Ustunel, A.S.2
  • 12
    • 0034342850 scopus 로고    scopus 로고
    • On a Ogawa-type integral with application to the fractional Brownian motion
    • DELGADO, R. and JOLIS, M. (2000). On a Ogawa-type integral with application to the fractional Brownian motion. Stochastic Anal. Appl. 18 617-634.
    • (2000) Stochastic Anal. Appl. , vol.18 , pp. 617-634
    • Delgado, R.1    Jolis, M.2
  • 13
    • 0142233524 scopus 로고    scopus 로고
    • Differentiability of Six Operators on Nonsmooth Functions and p-Variation
    • Springer, Berlin
    • DUDLEY, R. M. and NORVAISA, R. (1999). Differentiability of Six Operators on Nonsmooth Functions and p-Variation. Lecture Notes in Math. 1703. Springer, Berlin.
    • (1999) Lecture Notes in Math. , vol.1703
    • Dudley, R.M.1    Norvaisa, R.2
  • 14
    • 0033878593 scopus 로고    scopus 로고
    • Stochastic calculus for fractional Brownian motion. I. Theory
    • DUNCAN, T. E., HU, Y. and PASIK-DUNCAN, B. (2000). Stochastic calculus for fractional Brownian motion. I. Theory. SIAM J. Control Optim. 38 582-612.
    • (2000) SIAM J. Control Optim. , vol.38 , pp. 582-612
    • Duncan, T.E.1    Hu, Y.2    Pasik-Duncan, B.3
  • 16
    • 0037398307 scopus 로고    scopus 로고
    • n-covariation, generalized Dirichlet processes and calculus with respect to finite cubic variation process
    • ERRAMI, M. and Russo, F. (2003). n-covariation, generalized Dirichlet processes and calculus with respect to finite cubic variation process. Stochastic Process. Appl. 104 259-299.
    • (2003) Stochastic Process. Appl. , vol.104 , pp. 259-299
    • Errami, M.1    Russo, F.2
  • 17
    • 0033457813 scopus 로고    scopus 로고
    • On fractional Brownian processes
    • FEYEL, D. and DE LA PRADELLE, A. (1999). On fractional Brownian processes. Potential Anal. 10 273-288.
    • (1999) Potential Anal. , vol.10 , pp. 273-288
    • Feyel, D.1    De La Pradelle, A.2
  • 19
    • 84972528658 scopus 로고
    • Quadratic covariation and an extension of Itô's formula
    • FÖLLMER, H., PROTTER, P. and SHIRYAEV, A. N. (1995). Quadratic covariation and an extension of Itô's formula. Bernoulli 1 149-169.
    • (1995) Bernoulli , vol.1 , pp. 149-169
    • Föllmer, H.1    Protter, P.2    Shiryaev, A.N.3
  • 20
    • 0002902384 scopus 로고
    • Occupation densities
    • GEMAN, D. and HOROWITZ, J. (1980). Occupation densities. Ann. Probab. 10 1-67.
    • (1980) Ann. Probab. , vol.10 , pp. 1-67
    • Geman, D.1    Horowitz, J.2
  • 21
    • 0000352250 scopus 로고    scopus 로고
    • Stochastic partial differential equations driven by multiparameter fractional white noise
    • F. Gesztesy et al., eds. Amer. Math. Soc., Providence, RI
    • HU, Y. Z., OKSENDAL, B. and ZHANG, T. S. (2000). Stochastic partial differential equations driven by multiparameter fractional white noise. In Stochastic Processes. Physics and Geometry: New Interplays (F. Gesztesy et al., eds.) 2 327-337. Amer. Math. Soc., Providence, RI.
    • (2000) Stochastic Processes. Physics and Geometry: New Interplays , vol.2 , pp. 327-337
    • Hu, Y.Z.1    Oksendal, B.2    Zhang, T.S.3
  • 22
    • 22644449415 scopus 로고    scopus 로고
    • Ordinary differential equations with fractal noise
    • KLINGENHÖFER, F. and ZÄHLE, M. (1999). Ordinary differential equations with fractal noise. Proc. Amer. Math. Soc. 127 1021-1028.
    • (1999) Proc. Amer. Math. Soc. , vol.127 , pp. 1021-1028
    • Klingenhöfer, F.1    Zähle, M.2
  • 24
    • 0000746261 scopus 로고
    • Stochastic analysis of fractional Brownian motion
    • LIN, S. J. (1995). Stochastic analysis of fractional Brownian motion. Stochastics Stochastics Rep. 55 121-140.
    • (1995) Stochastics Stochastics Rep. , vol.55 , pp. 121-140
    • Lin, S.J.1
  • 25
    • 0032347402 scopus 로고    scopus 로고
    • Differential equations driven by rough signals
    • LYONS, T. J. (1998). Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14 215-310.
    • (1998) Rev. Mat. Iberoamericana , vol.14 , pp. 215-310
    • Lyons, T.J.1
  • 26
    • 0039348869 scopus 로고    scopus 로고
    • Calculus for multiplicative functionals, Itô's formula and differential equations
    • M. Fukushima, ed. Springer, Berlin
    • LYONS, T. J. and QIAN, Z. M. (1996). Calculus for multiplicative functionals, Itô's formula and differential equations. In Itô's Stochastic Calculus and Probability (M. Fukushima, ed.) 233-250. Springer, Berlin.
    • (1996) Itô's Stochastic Calculus and Probability , pp. 233-250
    • Lyons, T.J.1    Qian, Z.M.2
  • 27
    • 0000362483 scopus 로고
    • Decomposition of Dirichlet processes and its applications
    • LYONS, T. J. and ZHANG, T. S. (1994). Decomposition of Dirichlet processes and its applications. Ann. Probab. 22 494-524.
    • (1994) Ann. Probab. , vol.22 , pp. 494-524
    • Lyons, T.J.1    Zhang, T.S.2
  • 28
    • 0001220564 scopus 로고
    • A crossing estimate for the canonical process on a Dirichlet space and tightness result
    • LYONS, T. J. and ZHENG, W. (1988). A crossing estimate for the canonical process on a Dirichlet space and tightness result. Astérisque 157/158 249-271.
    • (1988) Astérisque , vol.157-158 , pp. 249-271
    • Lyons, T.J.1    Zheng, W.2
  • 29
    • 18044400859 scopus 로고    scopus 로고
    • Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion
    • MÉMIN, J., MISHURA, Y. and VALKEILA, E. (2001). Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion. Statist. Probab. Lett. 51 197-206.
    • (2001) Statist. Probab. Lett. , vol.51 , pp. 197-206
    • Mémin, J.1    Mishura, Y.2    Valkeila, E.3
  • 30
    • 0034560833 scopus 로고    scopus 로고
    • An isometric approach to generalized stochastic integrals
    • MISHURA, YU. and VALKEILA, E. (2000). An isometric approach to generalized stochastic integrals. J. Theoret. Probab. 13 673-693.
    • (2000) J. Theoret. Probab. , vol.13 , pp. 673-693
    • Mishura, Yu.1    Valkeila, E.2
  • 31
    • 0034562433 scopus 로고    scopus 로고
    • Integration questions related to fractional Brownian motion
    • PIPIRAS, V. and TAQQU, M. S. (2000). Integration questions related to fractional Brownian motion. Probab. Theory Related Fields 118 251-291.
    • (2000) Probab. Theory Related Fields , vol.118 , pp. 251-291
    • Pipiras, V.1    Taqqu, M.S.2
  • 34
    • 0031540977 scopus 로고    scopus 로고
    • Arbitrage from fractional Brownian motion
    • ROGERS, CH. (1997). Arbitrage from fractional Brownian motion. Math. Finance 7 95-105.
    • (1997) Math. Finance , vol.7 , pp. 95-105
    • Rogers, Ch.1
  • 35
    • 0346072577 scopus 로고
    • Intégrales progressive, rétrograde et symétrique de processus non-adaptés
    • RUSSO, F. and VALLOIS, P. (1991). Intégrales progressive, rétrograde et symétrique de processus non-adaptés. C. R. Acad. Sci. Paris Sér. I Math. 312 615-618.
    • (1991) C. R. Acad. Sci. Paris Sér. I Math. , vol.312 , pp. 615-618
    • Russo, F.1    Vallois, P.2
  • 36
    • 21344479524 scopus 로고
    • Forward, backward and symmetric stochastic integration
    • RUSSO, F. and VALLOIS, P. (1993). Forward, backward and symmetric stochastic integration. Probab. Theory Related Fields 97 403-421.
    • (1993) Probab. Theory Related Fields , vol.97 , pp. 403-421
    • Russo, F.1    Vallois, P.2
  • 37
    • 0001967383 scopus 로고
    • The generalized covariation process and Itô formula
    • RUSSO, F. and VALLOIS, P. (1995). The generalized covariation process and Itô formula. Stochastic Process. Appl. 59 81-104.
    • (1995) Stochastic Process. Appl. , vol.59 , pp. 81-104
    • Russo, F.1    Vallois, P.2
  • 39
    • 0002992001 scopus 로고    scopus 로고
    • Stochastic calculus with respect to a finite quadratic variation process
    • RUSSO, F. and VALLOIS, P. (2000). Stochastic calculus with respect to a finite quadratic variation process. Stochastics Stochastics Rep. 70 1-40.
    • (2000) Stochastics Stochastics Rep. , vol.70 , pp. 1-40
    • Russo, F.1    Vallois, P.2
  • 40
    • 0347349326 scopus 로고    scopus 로고
    • Fractional Brownian motion, random walks and binary market models
    • SOTTINEN, T. (2001). Fractional Brownian motion, random walks and binary market models. Finance Stock. 5 343-355.
    • (2001) Finance Stock. , vol.5 , pp. 343-355
    • Sottinen, T.1
  • 41
    • 0000881442 scopus 로고    scopus 로고
    • An Ito formula for local Dirichlet processes
    • WOLF, J. (1997). An Ito formula for local Dirichlet processes. Stochastics Stochastics Rep. 62 103-115.
    • (1997) Stochastics Stochastics Rep. , vol.62 , pp. 103-115
    • Wolf, J.1
  • 42
    • 0346088245 scopus 로고
    • An inequality of Holder type, connected with Stieltjes integration
    • YOUNG, L. C. (1936). An inequality of Holder type, connected with Stieltjes integration. Acta Mart. 67251-282.
    • (1936) Acta Mart. , pp. 67251-67282
    • Young, L.C.1
  • 43
    • 0038290919 scopus 로고    scopus 로고
    • Integration with respect to fractal functions and stochastic calculus. I
    • ZÄHLE, M. (1998). Integration with respect to fractal functions and stochastic calculus. I. Probab. Theory Related. Fields 111 333-374.
    • (1998) Probab. Theory Related. Fields , vol.111 , pp. 333-374
    • Zähle, M.1
  • 44
    • 0041026849 scopus 로고    scopus 로고
    • Integration with respect to fractal functions and stochastic calculus. II
    • ZÄHLE, M. (2001). Integration with respect to fractal functions and stochastic calculus. II. Math. Nach. 225 145-183.
    • (2001) Math. Nach. , vol.225 , pp. 145-183
    • Zähle, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.