-
1
-
-
0002087531
-
Homoclinics for second order conservative systems
-
(Trento, 1990), Longman Sci. Tech., Harlow
-
A. Ambrosetti, M.L. Bertotti. Homoclinics for second order conservative systems. In: Partial differential equations and related subjects (Trento, 1990), pages 21-37. Longman Sci. Tech., Harlow, 1992.
-
(1992)
Partial Differential Equations and Related Subjects
, pp. 21-37
-
-
Ambrosetti, A.1
Bertotti, M.L.2
-
2
-
-
0001168993
-
Multiple homoclinic orbits for a class of conservative systems
-
A. Ambrosetti, V. Coti Zelati. Multiple homoclinic orbits for a class of conservative systems. Rend. Sem. Mat. Univ. Padova, 89: 177-194, 1993.
-
(1993)
Rend. Sem. Mat. Univ. Padova
, vol.89
, pp. 177-194
-
-
Ambrosetti, A.1
Coti Zelati, V.2
-
4
-
-
0001645385
-
Homoclinic orbits on compact manifolds
-
V. Benci, F. Giannoni. Homoclinic orbits on compact manifolds. J. Math. Anal. Appl., 157(2): 568-576, 1991.
-
(1991)
J. Math. Anal. Appl.
, vol.157
, Issue.2
, pp. 568-576
-
-
Benci, V.1
Giannoni, F.2
-
6
-
-
0000830631
-
A variational approach to homoclinic orbits in Hamiltonian systems
-
V. Coti Zelati, I. Ekeland, E. Séré. A variational approach to homoclinic orbits in Hamiltonian systems. Math. Ann., 288(1): 133-160, 1990.
-
(1990)
Math. Ann.
, vol.288
, Issue.1
, pp. 133-160
-
-
Coti Zelati, V.1
Ekeland, I.2
Séré, E.3
-
7
-
-
0039088429
-
Stationary states of the nonlinear Dirac equation: A variational approach
-
M.J. Esteban, E. Séré. Stationary states of the nonlinear Dirac equation: a variational approach. Comm. Math. Phys., 171(2): 323-350, 1995.
-
(1995)
Comm. Math. Phys.
, vol.171
, Issue.2
, pp. 323-350
-
-
Esteban, M.J.1
Séré, E.2
-
8
-
-
85009395820
-
Multiple solutions of the forced double pendulum equation
-
(Perpignan, 1987), Univ. Montréal, Montreal, PQ
-
G. Fournier, M. Willem. Multiple solutions of the forced double pendulum equation. In: Analyse non linéaire (Perpignan, 1987), pages 259-281. Univ. Montréal, Montreal, PQ, 1989.
-
(1989)
Analyse Non Linéaire
, pp. 259-281
-
-
Fournier, G.1
Willem, M.2
-
9
-
-
0001093993
-
First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems
-
H. Hofer, K. Wysocki. First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems. Math. Ann., 288(3): 483-503, 1990.
-
(1990)
Math. Ann.
, vol.288
, Issue.3
, pp. 483-503
-
-
Hofer, H.1
Wysocki, K.2
-
10
-
-
85030707196
-
The concentration-compactness principle in the calculus of variations. The locally compact case. I
-
P.-L. Lions. The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire, 1(2): 109-145, 1984.
-
(1984)
Ann. Inst. H. Poincaré Anal. Non Linéaire
, vol.1
, Issue.2
, pp. 109-145
-
-
Lions, P.-L.1
-
11
-
-
85030719142
-
The concentration-compactness principle in the calculus of variations. The locally compact case. II
-
P.-L. Lions. The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. H. Poincaré Anal. Non Linéaire, 1(4): 223-283, 1984.
-
(1984)
Ann. Inst. H. Poincaré Anal. Non Linéaire
, vol.1
, Issue.4
, pp. 223-283
-
-
Lions, P.-L.1
-
12
-
-
51249171492
-
Some results on connecting orbits for a class of Hamiltonian systems
-
P.H. Rabinowitz, K. Tanaka. Some results on connecting orbits for a class of Hamiltonian systems. Math. Z., 206(3): 473-499, 1991.
-
(1991)
Math. Z.
, vol.206
, Issue.3
, pp. 473-499
-
-
Rabinowitz, P.H.1
Tanaka, K.2
-
13
-
-
38149144312
-
Homoclinic orbits in a first order superquadratic Hamiltonian system: Convergence of subharmonic orbits
-
K. Tanaka. Homoclinic orbits in a first order superquadratic Hamiltonian system: convergence of subharmonic orbits. J. Differential Equations, 94(2): 315-339, 1991.
-
(1991)
J. Differential Equations
, vol.94
, Issue.2
, pp. 315-339
-
-
Tanaka, K.1
|