-
1
-
-
0004342320
-
-
Ph.D. Thesis, University of York, and math.RA/0001083
-
C.H. Barton, Magic squares of Lie algebras, Ph.D. Thesis, University of York, 2000, and math.RA/0001083.
-
(2000)
Magic Squares of Lie Algebras
-
-
Barton, C.H.1
-
2
-
-
0000878327
-
Lie groups in the foundations of geometry
-
H. Freudenthal, Lie groups in the foundations of geometry, Adv. in Math. 1 (1963) 145-189.
-
(1963)
Adv. in Math.
, vol.1
, pp. 145-189
-
-
Freudenthal, H.1
-
5
-
-
0040499938
-
The Capelli identity, the double commutant theorem, and multiplicity-free actions
-
R. Howe, T. Umeda, The Capelli identity, the double commutant theorem, and multiplicity-free actions, Math. Ann. 290 (1991) 565-619.
-
(1991)
Math. Ann.
, vol.290
, pp. 565-619
-
-
Howe, R.1
Umeda, T.2
-
8
-
-
0033477397
-
Capelli identities for classical Lie algebras
-
A. Molev, M. Nazarov, Capelli identities for classical Lie algebras, Math. Ann. 313 (1999) 315-357.
-
(1999)
Math. Ann.
, vol.313
, pp. 315-357
-
-
Molev, A.1
Nazarov, M.2
-
9
-
-
85030922788
-
Capelli elements in the classical universal enveloping algebras
-
math/9811129
-
M. Nazarov, Capelli elements in the classical universal enveloping algebras, math/9811129.
-
-
-
Nazarov, M.1
-
13
-
-
84963730471
-
"Cayley-Klein" schemes for real Lie algebras and Freudenthal magic squares
-
physics/9702031
-
M. Santander, F.J. Herranz, "Cayley-Klein" schemes for real Lie algebras and Freudenthal magic squares, physics/9702031.
-
-
-
Santander, M.1
Herranz, F.J.2
-
14
-
-
0347038659
-
Symmetric homogeneous spaces in classical and quantum mechanics: A viewpoint for classification
-
Proceedings of the First International Workshop on 'Symmetries in Quantum Mechanics and Quantum Optics', Universidad de Burgos
-
M. Santander, Symmetric homogeneous spaces in classical and quantum mechanics: a viewpoint for classification, Proceedings of the First International Workshop on 'Symmetries in Quantum Mechanics and Quantum Optics', Universidad de Burgos, 1999.
-
(1999)
-
-
Santander, M.1
-
16
-
-
36149048971
-
Division algebras, (pseudo-) orthogonal groups and spinors
-
A. Sudbery, Division algebras, (pseudo-) orthogonal groups and spinors, J. Phys. A 17 (1984) 939-955.
-
(1984)
J. Phys. A
, vol.17
, pp. 939-955
-
-
Sudbery, A.1
-
17
-
-
0001599031
-
Algèbres alternatives, Alèbres de Jordan et algebres de Lie exceptionelles
-
J. Tits, Algèbres alternatives, Alèbres de Jordan et algebres de Lie exceptionelles, Nederl. Akad. Wetensch. Proc. Ser. A 69 (1966) 223-237.
-
(1966)
Nederl. Akad. Wetensch. Proc. Ser. A
, vol.69
, pp. 223-237
-
-
Tits, J.1
-
18
-
-
0004109271
-
-
Princeton University Press, Princeton, NJ
-
H. Weyl, The Classical Groups, Princeton University Press, Princeton, NJ, 1946.
-
(1946)
The Classical Groups
-
-
Weyl, H.1
-
19
-
-
0001440420
-
Models of exceptional Lie algebras
-
I.L. Kantor, Models of exceptional Lie algebras, Soviet Math. Doklady 14 (1973) 254-258.
-
(1973)
Soviet Math. Doklady
, vol.14
, pp. 254-258
-
-
Kantor, I.L.1
-
20
-
-
0000572821
-
Imbedding of Jordan algebras into Lie algebras I
-
M. Koecher, Imbedding of Jordan algebras into Lie algebras I, Amer. J. Math. 89 (1967) 787-816.
-
(1967)
Amer. J. Math.
, vol.89
, pp. 787-816
-
-
Koecher, M.1
-
21
-
-
0002493821
-
Nonassociative coefficient algebras for Steinberg unitary Lie algebras
-
B.N. Allison, J.R. Faulkner, Nonassociative coefficient algebras for Steinberg unitary Lie algebras, J. Algebra 161 (1993) 1-19.
-
(1993)
J. Algebra
, vol.161
, pp. 1-19
-
-
Allison, B.N.1
Faulkner, J.R.2
-
22
-
-
0037109516
-
Triality, exceptional Lie algebras, and Deligne dimension formulas
-
J.M. Landsberg, L. Manivel, Triality, exceptional Lie algebras, and Deligne dimension formulas, Adv. Math. 171 (2002) 59-85.
-
(2002)
Adv. Math.
, vol.171
, pp. 59-85
-
-
Landsberg, J.M.1
Manivel, L.2
|