-
2
-
-
0013217164
-
Convergence of the approximation of wave functions by oscillatory functions in the high frequency limit
-
Série I
-
de La Bourdonnaye A. Convergence of the approximation of wave functions by oscillatory functions in the high frequency limit. Comptes Rendus de l'Academie des Science. Paris. Série I 1994; 318:765-768.
-
(1994)
Comptes Rendus de L'Academie des Science. Paris
, vol.318
, pp. 765-768
-
-
de La Bourdonnaye, A.1
-
4
-
-
0037431386
-
Plane wave interpolation in direct collocation boundary element method for radiation and wave scattering: Numerical aspects and applications
-
Perrey-Debain E, Trevelyan J, Bettess P. Plane wave interpolation in direct collocation boundary element method for radiation and wave scattering: numerical aspects and applications. Journal of Sound and Vibration 2003; 261(5):839-858.
-
(2003)
Journal of Sound and Vibration
, vol.261
, Issue.5
, pp. 839-858
-
-
Perrey-Debain, E.1
Trevelyan, J.2
Bettess, P.3
-
6
-
-
0003424388
-
-
Springer: Berlin, Heidelberg, New York, Tokyo
-
Brebbia CA, Telles JCF, Wrobel LC. Boundary Element Technique, Theory and Applications in Engineering. Springer: Berlin, Heidelberg, New York, Tokyo, 1984.
-
(1984)
Boundary Element Technique, Theory and Applications in Engineering
-
-
Brebbia, C.A.1
Telles, J.C.F.2
Wrobel, L.C.3
-
10
-
-
0001125798
-
Solution of Helmholtz equation in the exterior domain by elementary boundary integral methods
-
Amini S, Kirkup M. Solution of Helmholtz equation in the exterior domain by elementary boundary integral methods. Journal of Computational Physics 1995; 118:208-221.
-
(1995)
Journal of Computational Physics
, vol.118
, pp. 208-221
-
-
Amini, S.1
Kirkup, M.2
-
11
-
-
84953655023
-
Improved integral formulation for acoustic radiation problems
-
Schenck HA. Improved integral formulation for acoustic radiation problems. Journal of the Acoustical Society of America, 1968; 44:41-58.
-
(1968)
Journal of the Acoustical Society of America
, vol.44
, pp. 41-58
-
-
Schenck, H.A.1
-
13
-
-
0031146158
-
A hierarchical functions set for predicting very high order plate bending modes with any boundary conditions
-
Beslin O, Nicolas J. A hierarchical functions set for predicting very high order plate bending modes with any boundary conditions. Journal of Sound and Vibration 1997; 202(5):633-655.
-
(1997)
Journal of Sound and Vibration
, vol.202
, Issue.5
, pp. 633-655
-
-
Beslin, O.1
Nicolas, J.2
-
14
-
-
0000179731
-
Fourier p-element for the analysis of beams and plates
-
Leung AYT, Chan JKW. Fourier p-element for the analysis of beams and plates. Journal of Sound and Vibration 1998; 212(1):179-185.
-
(1998)
Journal of Sound and Vibration
, vol.212
, Issue.1
, pp. 179-185
-
-
Leung, A.Y.T.1
Chan, J.K.W.2
-
15
-
-
0023349184
-
A self-adaptive co-ordinate transformation for efficient numerical evaluation of general boundary element integrals
-
Telles JCF. A self-adaptive co-ordinate transformation for efficient numerical evaluation of general boundary element integrals. International Journal for Numerical Methods in Engineering 1987; 24:959-973.
-
(1987)
International Journal for Numerical Methods in Engineering
, vol.24
, pp. 959-973
-
-
Telles, J.C.F.1
-
17
-
-
0004245694
-
-
of Appl. Math. Ser., 10th edition, National Bureau of Standards. U.S. Government Printing Office: Washington, D.C
-
Abramovitz M, Stegun IA. Handbook of Mathematical Functions, vol. 55 of Appl. Math. Ser., 10th edition, National Bureau of Standards. U.S. Government Printing Office: Washington, D.C., 1972.
-
(1972)
Handbook of Mathematical Functions
, vol.55
-
-
Abramovitz, M.1
Stegun, I.A.2
-
20
-
-
1642470110
-
Plane wave basis finite elements and boundary elements for scattering problems
-
15-25 July Durham University, U.K URL:
-
Bettess P. Plane wave basis finite elements and boundary elements for scattering problems. LMS Durham Symposium: Computational methods for wave propagation in direct scattering, 15-25 July 2002, Durham University, U.K., URL:http://www.maths.strath.ac.uk/durham02.
-
(2002)
LMS Durham Symposium: Computational Methods for Wave Propagation in Direct Scattering
-
-
Bettess, P.1
-
21
-
-
0000893843
-
The fast multipole method: Numerical implementation
-
Darve E. The fast multipole method: numerical implementation. Journal of Computational Physics 2000; 1608:195-240.
-
(2000)
Journal of Computational Physics
, vol.1608
, pp. 195-240
-
-
Darve, E.1
|