-
1
-
-
0029482059
-
A dichotomy theorem for maximum generalized satisfiability problems
-
N. Creignou, A dichotomy theorem for maximum generalized satisfiability problems, J. Comput. System Sci. 51 (3) (1995) 511-522.
-
(1995)
J. Comput. System Sci.
, vol.51
, Issue.3
, pp. 511-522
-
-
Creignou, N.1
-
2
-
-
0002272462
-
Complexity of generalized satisfiability counting problems
-
N. Creignou, M. Hermann, Complexity of generalized satisfiability counting problems, Inform. and Comput. 125 (1996) 1-12.
-
(1996)
Inform. and Comput.
, vol.125
, pp. 1-12
-
-
Creignou, N.1
Hermann, M.2
-
3
-
-
0001228266
-
The directed subgraph homeomorphism problem
-
S. Fortune, J. Hopcroft, J. Wyllie, The directed subgraph homeomorphism problem, Theoret. Comput. Sci. 10 (2) (1980) 111-121.
-
(1980)
Theoret. Comput. Sci.
, vol.10
, Issue.2
, pp. 111-121
-
-
Fortune, S.1
Hopcroft, J.2
Wyllie, J.3
-
4
-
-
0027070260
-
A bounded approximation for the minimum cost 2-Sat problem
-
D. Gusfield, L. Pitt, A bounded approximation for the minimum cost 2-Sat problem, Algorithmica 8 (1992) 103-117.
-
(1992)
Algorithmica
, vol.8
, pp. 103-117
-
-
Gusfield, D.1
Pitt, L.2
-
6
-
-
0042011119
-
An extension of a theorem of Dantzig
-
H.W. Kuhn, A.W. Tucker (Eds.), Princeton University Press, New York
-
I. Heller, C.B. Tompkins, An extension of a theorem of Dantzig, in: H.W. Kuhn, A.W. Tucker (Eds.), Linear Inequalities and Related Systems, Princeton University Press, New York, 1956, pp. 247-252.
-
(1956)
Linear Inequalities and Related Systems
, pp. 247-252
-
-
Heller, I.1
Tompkins, C.B.2
-
7
-
-
0002555219
-
Tight bounds and 2-approximation algorithms for integer programs with two variables per inequality
-
D. Hochbaum, N. Megiddo, J. Naor, A. Tamir, Tight bounds and 2-approximation algorithms for integer programs with two variables per inequality, Math. Programming 62 (1993) 69-84.
-
(1993)
Math. Programming
, vol.62
, pp. 69-84
-
-
Hochbaum, D.1
Megiddo, N.2
Naor, J.3
Tamir, A.4
-
8
-
-
0002013145
-
Integral boundary points of convex polyhedra
-
H.W. Kuhn, A.W. Tucker (Eds.), Princeton University Press, New York
-
A.J. Hoffman, J.B. Kruskal, Integral boundary points of convex polyhedra, in: H.W. Kuhn, A.W. Tucker (Eds.), Linear Inequalities and Related Systems, Princeton University Press, New York, 1956, pp. 223-246.
-
(1956)
Linear Inequalities and Related Systems
, pp. 223-246
-
-
Hoffman, A.J.1
Kruskal, J.B.2
-
10
-
-
0006807792
-
Polynomially bounded minimization problems that are hard to approximate
-
V. Kann, Polynomially bounded minimization problems that are hard to approximate, Nordic J. Comput. 1 (1994) 317-331.
-
(1994)
Nordic J. Comput.
, vol.1
, pp. 317-331
-
-
Kann, V.1
-
11
-
-
0000564361
-
A polynomial algorithm in linear programming
-
L.G. Khachiyan, A polynomial algorithm in linear programming, Sov. Math. Dokl. 20 (1979) 191-194.
-
(1979)
Sov. Math. Dokl.
, vol.20
, pp. 191-194
-
-
Khachiyan, L.G.1
-
12
-
-
84974653615
-
Constraint satisfaction: The approximability of minimization problems
-
S. Khanna, M. Sudan, L. Trevisan, Constraint satisfaction: the approximability of minimization problems, in: Proc. 12th Annu. IEEE Conf. on Computational Complexity, 1997, pp. 282-296.
-
(1997)
Proc. 12th Annu. IEEE Conf. on Computational Complexity
, pp. 282-296
-
-
Khanna, S.1
Sudan, M.2
Trevisan, L.3
-
13
-
-
0030646744
-
A complete classification of the approximability of maximization problems derived from boolean constraint satisfaction
-
S. Khanna, M. Sudan, D.P. Williamson, A complete classification of the approximability of maximization problems derived from boolean constraint satisfaction, in: Proc. 29th ACM Symp. on Theory of Computing, 1997, pp. 11-20.
-
(1997)
Proc. 29th ACM Symp. on Theory of Computing
, pp. 11-20
-
-
Khanna, S.1
Sudan, M.2
Williamson, D.P.3
-
14
-
-
0003725604
-
-
Prentice-Hall, Englewood Cliffs, NJ
-
C.H. Papadimitriou, K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Prentice-Hall, Englewood Cliffs, NJ, 1982.
-
(1982)
Combinatorial Optimization: Algorithms and Complexity
-
-
Papadimitriou, C.H.1
Steiglitz, K.2
|