-
1
-
-
0009451204
-
Effective Temporal Logic of Programs
-
L. Bole and A. Szalas, eds., UCL Press, London
-
H. Andreká, V. Goranko, S. Mikulás, I. Németi and I. Sain, Effective Temporal Logic of Programs, in: L. Bole and A. Szalas, eds., Time and Logic. A Computational Approach (UCL Press, London, 1995) 51-129.
-
(1995)
Time and Logic. A Computational Approach
, pp. 51-129
-
-
Andreká, H.1
Goranko, V.2
Mikulás, S.3
Németi, I.4
Sain, I.5
-
3
-
-
0002921593
-
On a decision method in restricted second order arithmetic
-
Stanford University Press, Stanford
-
J.R. Büchi, On a decision method in restricted second order arithmetic, in: Logic, Methodology and Philosophy of Science. Proc. 1960 Congress (Stanford University Press, Stanford, 1962) 1-11.
-
(1962)
Logic, Methodology and Philosophy of Science. Proc. 1960 Congress
, pp. 1-11
-
-
Büchi, J.R.1
-
4
-
-
0347637373
-
Proof Methods for Modal and Intuitionistic Logics
-
Reidel, Dordrecht
-
M. Fitting, Proof Methods for Modal and Intuitionistic Logics, Synthese Library, Vol. 169 (Reidel, Dordrecht, 1983).
-
(1983)
Synthese Library
, vol.169
-
-
Fitting, M.1
-
5
-
-
0345745601
-
Quantifying over propositions in relevance logic: Non-axiomatisability of primary interpretations of ∀p and ∃p
-
P. Kremer, Quantifying over propositions in relevance logic: Non-axiomatisability of primary interpretations of ∀p and ∃p, J. Symbolic Logic 58 (1993) 334-349.
-
(1993)
J. Symbolic Logic
, vol.58
, pp. 334-349
-
-
Kremer, P.1
-
6
-
-
0039681337
-
The undecidability of monadic modal quantification theory
-
S.A. Kripke, The undecidability of monadic modal quantification theory, Z. Math. Logik Grundlag. Math. 8 (1962) 113-116.
-
(1962)
Z. Math. Logik Grundlag. Math.
, vol.8
, pp. 113-116
-
-
Kripke, S.A.1
-
8
-
-
0025703079
-
On the interpretability of arithmetic in temporal logic
-
F. Kröger, On the interpretability of arithmetic in temporal logic, Theoret. Comput. Sci. 73 (1990) 47-60.
-
(1990)
Theoret. Comput. Sci.
, vol.73
, pp. 47-60
-
-
Kröger, F.1
-
9
-
-
53949085015
-
Inverse method of establishing deducibility
-
Y.S. Maslov, Inverse method of establishing deducibility, Trudy Mat. Inst. Steklov (1968) 26-87.
-
(1968)
Trudy Mat. Inst. Steklov
, pp. 26-87
-
-
Maslov, Y.S.1
-
10
-
-
33746222270
-
Gentzen-type systems and resolution rules. Part I: Propositional logic
-
Springer, Berlin
-
G.E. Mints, Gentzen-type systems and resolution rules. Part I: Propositional logic, in: COLOG-88. Proc. Internat. Conf. on Computer Logic, Lecture Notes in Computer Science, Vol. 417 (Springer, Berlin, 1990) 198-231.
-
(1990)
COLOG-88. Proc. Internat. Conf. on Computer Logic, Lecture Notes in Computer Science
, vol.417
, pp. 198-231
-
-
Mints, G.E.1
-
11
-
-
21644454475
-
Gentzen-type systems and resolution rules. Part II: Predicate logic
-
Springer, Berlin
-
G.E. Mints, Gentzen-type systems and resolution rules. Part II: Predicate logic, in: Logic Colloquium 1990, Lecture Notes in Logic, Vol. 2 (Springer, Berlin, 1993).
-
(1993)
Logic Colloquium 1990, Lecture Notes in Logic
, vol.2
-
-
Mints, G.E.1
-
12
-
-
38249043285
-
Concerning the semantic consequence relation in first-order temporal logic
-
A. Szalas, Concerning the semantic consequence relation in first-order temporal logic, Theoret. Comput. Sci. 47 (1986) 329-334.
-
(1986)
Theoret. Comput. Sci.
, vol.47
, pp. 329-334
-
-
Szalas, A.1
-
13
-
-
0024016465
-
Incompleteness of first-order temporal logic with until
-
A. Szalas and L. Holenderski, Incompleteness of first-order temporal logic with until, Theoret. Comput. Sci. 57 (1988) 317-325.
-
(1988)
Theoret. Comput. Sci.
, vol.57
, pp. 317-325
-
-
Szalas, A.1
Holenderski, L.2
-
14
-
-
0347637369
-
-
North-Holland, Amsterdam, 2nd ed.
-
G. Takeuti, Proof Theory, Studies in Logic, Vol. 81. (North-Holland, Amsterdam, 2nd ed., 1987).
-
(1987)
Proof Theory, Studies in Logic
, vol.81
-
-
Takeuti, G.1
-
15
-
-
0028459868
-
Proof strategies in linear logic
-
T. Tammet, Proof strategies in linear logic, J. Automat. Reason. 12 (1994) 273-304.
-
(1994)
J. Automat. Reason.
, vol.12
, pp. 273-304
-
-
Tammet, T.1
|