-
1
-
-
11944274056
-
Observation of Bose-Einstein condensation in a dilute atomic vapor
-
M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, "Observation of Bose-Einstein condensation in a dilute atomic vapor," Science 269, 198-201 (1995).
-
(1995)
Science
, vol.269
, pp. 198-201
-
-
Anderson, M.H.1
Ensher, J.R.2
Matthews, M.R.3
Wieman, C.E.4
Cornell, E.A.5
-
2
-
-
4244115335
-
Bose-Einstein Condensation in a Gas of Sodium Atoms
-
K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, "Bose-Einstein Condensation in a Gas of Sodium Atoms," Phys. Rev. Lett. 75, 3969-3973 (1995).
-
(1995)
Phys. Rev. Lett.
, vol.75
, pp. 3969-3973
-
-
Davis, K.B.1
Mewes, M.-O.2
Andrews, M.R.3
Van Druten, N.J.4
Durfee, D.S.5
Kurn, D.M.6
Ketterle, W.7
-
3
-
-
4243132347
-
Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions
-
C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, "Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions," Phys. Rev. Lett. 75, 1687-1690 (1995).
-
(1995)
Phys. Rev. Lett.
, vol.75
, pp. 1687-1690
-
-
Bradley, C.C.1
Sackett, C.A.2
Tollett, J.J.3
Hulet, R.G.4
-
4
-
-
0011849537
-
Molecule of the Year 1995
-
F. Bloom, "Molecule of the Year 1995," Science 270, 1901 (1995).
-
(1995)
Science
, vol.270
, pp. 1901
-
-
Bloom, F.1
-
5
-
-
0004284519
-
-
Wiley, Chichester, 2nd ed.
-
F. Mandl, Statistical Physics (Wiley, Chichester, 1988), 2nd ed., pp. 292-299.
-
(1988)
Statistical Physics
, pp. 292-299
-
-
Mandl, F.1
-
6
-
-
21744433844
-
Bose-Einstein condensation
-
I. Silvera, "Bose-Einstein condensation," Am. J. Phys. 65, 570-574 (1997).
-
(1997)
Am. J. Phys.
, vol.65
, pp. 570-574
-
-
Silvera, I.1
-
7
-
-
0000272722
-
Bose-Einstein condensation in an external potential
-
V. Bagnato, D. E. Pritchard, and D. Kleppner, "Bose-Einstein condensation in an external potential," Phys. Rev. A 35, 4354-4358 (1987).
-
(1987)
Phys. Rev. A
, vol.35
, pp. 4354-4358
-
-
Bagnato, V.1
Pritchard, D.E.2
Kleppner, D.3
-
8
-
-
0006712406
-
On Bose-Einstein Condensation in Harmonic traps
-
S. Grossman and M. Holthaus, "On Bose-Einstein Condensation in Harmonic traps," Phys. Lett. A 208, 188-192 (1995).
-
(1995)
Phys. Lett. A
, vol.208
, pp. 188-192
-
-
Grossman, S.1
Holthaus, M.2
-
9
-
-
0030534627
-
Bose-Einstein condensation with evaporatively cooled atoms
-
K. Burnett, "Bose-Einstein condensation with evaporatively cooled atoms," Contemp. Phys. 37, 1-14 (1996).
-
(1996)
Contemp. Phys.
, vol.37
, pp. 1-14
-
-
Burnett, K.1
-
10
-
-
0038879204
-
The Richmyer Memorial Lecture: Bose-Einstein Condensation in an Ultracold Gas
-
C. Wieman, "The Richmyer Memorial Lecture: Bose-Einstein Condensation in an Ultracold Gas," Am. J. Phys. 64 (7), 847-855 (1996).
-
(1996)
Am. J. Phys.
, vol.64
, Issue.7
, pp. 847-855
-
-
Wieman, C.1
-
11
-
-
0002063881
-
The fuss about Bose-Einstein condensation
-
D. Kleppner, "The fuss about Bose-Einstein condensation," Phys. Today 49 (8), 11-13 (1996).
-
(1996)
Phys. Today
, vol.49
, Issue.8
, pp. 11-13
-
-
Kleppner, D.1
-
12
-
-
85033906690
-
-
note
-
The m units of energy must be partitioned between the three independent oscillators. To visualize the problem, represent the units of energy as m indistinguishable particles in a row. There are (m-1) spots between the particles in which to place two "dividers" which partition the energy into three sets. The total number of permutations of the particles and dividers is (M + 2)!. To determine the total number of states this must be divided by m!2! because permuting the energy units energy units amongst themselves and permuting the dividers amongst themselves does not produce a new arrangement. Thus the total number of states is (m + 2)(m+ 1)/2.
-
-
-
|