메뉴 건너뛰기




Volumn 66, Issue 3, 1998, Pages 185-190

Numerical analysis of Bose-Einstein condensation in a three-dimensional harmonic oscillator potential

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0345982312     PISSN: 00029505     EISSN: None     Source Type: Journal    
DOI: 10.1119/1.18843     Document Type: Article
Times cited : (22)

References (12)
  • 1
    • 11944274056 scopus 로고
    • Observation of Bose-Einstein condensation in a dilute atomic vapor
    • M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, "Observation of Bose-Einstein condensation in a dilute atomic vapor," Science 269, 198-201 (1995).
    • (1995) Science , vol.269 , pp. 198-201
    • Anderson, M.H.1    Ensher, J.R.2    Matthews, M.R.3    Wieman, C.E.4    Cornell, E.A.5
  • 3
    • 4243132347 scopus 로고
    • Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions
    • C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, "Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions," Phys. Rev. Lett. 75, 1687-1690 (1995).
    • (1995) Phys. Rev. Lett. , vol.75 , pp. 1687-1690
    • Bradley, C.C.1    Sackett, C.A.2    Tollett, J.J.3    Hulet, R.G.4
  • 4
    • 0011849537 scopus 로고
    • Molecule of the Year 1995
    • F. Bloom, "Molecule of the Year 1995," Science 270, 1901 (1995).
    • (1995) Science , vol.270 , pp. 1901
    • Bloom, F.1
  • 5
    • 0004284519 scopus 로고
    • Wiley, Chichester, 2nd ed.
    • F. Mandl, Statistical Physics (Wiley, Chichester, 1988), 2nd ed., pp. 292-299.
    • (1988) Statistical Physics , pp. 292-299
    • Mandl, F.1
  • 6
    • 21744433844 scopus 로고    scopus 로고
    • Bose-Einstein condensation
    • I. Silvera, "Bose-Einstein condensation," Am. J. Phys. 65, 570-574 (1997).
    • (1997) Am. J. Phys. , vol.65 , pp. 570-574
    • Silvera, I.1
  • 7
    • 0000272722 scopus 로고
    • Bose-Einstein condensation in an external potential
    • V. Bagnato, D. E. Pritchard, and D. Kleppner, "Bose-Einstein condensation in an external potential," Phys. Rev. A 35, 4354-4358 (1987).
    • (1987) Phys. Rev. A , vol.35 , pp. 4354-4358
    • Bagnato, V.1    Pritchard, D.E.2    Kleppner, D.3
  • 8
    • 0006712406 scopus 로고
    • On Bose-Einstein Condensation in Harmonic traps
    • S. Grossman and M. Holthaus, "On Bose-Einstein Condensation in Harmonic traps," Phys. Lett. A 208, 188-192 (1995).
    • (1995) Phys. Lett. A , vol.208 , pp. 188-192
    • Grossman, S.1    Holthaus, M.2
  • 9
    • 0030534627 scopus 로고    scopus 로고
    • Bose-Einstein condensation with evaporatively cooled atoms
    • K. Burnett, "Bose-Einstein condensation with evaporatively cooled atoms," Contemp. Phys. 37, 1-14 (1996).
    • (1996) Contemp. Phys. , vol.37 , pp. 1-14
    • Burnett, K.1
  • 10
    • 0038879204 scopus 로고    scopus 로고
    • The Richmyer Memorial Lecture: Bose-Einstein Condensation in an Ultracold Gas
    • C. Wieman, "The Richmyer Memorial Lecture: Bose-Einstein Condensation in an Ultracold Gas," Am. J. Phys. 64 (7), 847-855 (1996).
    • (1996) Am. J. Phys. , vol.64 , Issue.7 , pp. 847-855
    • Wieman, C.1
  • 11
    • 0002063881 scopus 로고    scopus 로고
    • The fuss about Bose-Einstein condensation
    • D. Kleppner, "The fuss about Bose-Einstein condensation," Phys. Today 49 (8), 11-13 (1996).
    • (1996) Phys. Today , vol.49 , Issue.8 , pp. 11-13
    • Kleppner, D.1
  • 12
    • 85033906690 scopus 로고    scopus 로고
    • note
    • The m units of energy must be partitioned between the three independent oscillators. To visualize the problem, represent the units of energy as m indistinguishable particles in a row. There are (m-1) spots between the particles in which to place two "dividers" which partition the energy into three sets. The total number of permutations of the particles and dividers is (M + 2)!. To determine the total number of states this must be divided by m!2! because permuting the energy units energy units amongst themselves and permuting the dividers amongst themselves does not produce a new arrangement. Thus the total number of states is (m + 2)(m+ 1)/2.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.